Ultraviolet photodissociation dynamics of 2-methylallyl radical from the 3p Rydberg state were investigated in the wavelength region of 226–244 nm using the high-n Rydberg atom time-of-flight (HRTOF) technique. The 2-methylallyl radicals were generated by 193 nm photolysis of 3-chloro-2-methyl-1-propene precursors. The photofragment yield spectrum of H-atom products increases in intensity with decreasing wavelengths in 226–244 nm. The TOF spectra of H-atom products show a bimodal structure. The predominant product channel (with ∼98% branching ratio) has a kinetic energy release peaking at ∼7 kcal/mol, with an average ratio of ET in the total available energy, (fT), of ∼0.18 in 226–244 nm and an isotropic product angular distribution. At the low ET, isotropic component is from statistical unimolecular decomposition of highly vibrationally excited hot 2-methylallyl to the methylenecyclopropane+H products, following internal conversion from the excited electronic state. The minor product channel (with ∼2% branching ratio) has a large kinetic energy peaking at ∼50 kcal/mol, with (fT)≈0.63 and an anisotropic angular distribution (β≈−0.2). At the high ET, anisotropic component is non-statistical and is postulated to be from direct loss of H atom via the 3p Rydberg state or repulsive part of the ground state to the 1,3-butadiene+H products.

[1]
A.
Callear
and
H.
Lee
,
Trans. Faraday Soc.
64
,
308
(
1968
).
[2]
N.
Nakashima
and
K.
Yoshihara
,
Laser Chem.
7
,
177
(
1987
).
[3]
F.
Bayrakçeken
,
Z.
Telatar
,
F.
Ari
, and
A. B.
Bayrak
,
Spectrochim. Acta A
67
,
1276
(
2007
).
[4]
J. W.
Hudgens
and
C.
Dulcey
,
J. Phy. Chem. A
89
,
1505
(
1985
).
[5]
C. C.
Chen
,
H. C.
Wu
,
C. M.
Tseng
,
Y. H.
Yang
, and
Y. T.
Chen
,
J. Chem. Phys.
119
,
241
(
2003
).
[6]
M.
Gasser
,
J. A.
Frey
,
J. M.
Hostettler
, and
A.
Bach
,
J. Mole. Spectrosc.
263
,
93
(
2010
).
[7]
J.
Herterich
,
T.
Gerbich
, and
I.
Fischer
,
Chem Phys Chem
14
,
3906
(
2013
).
[8]
J. C.
Schultz
,
F. A.
Houle
, and
J. L.
Beauchamp
,
J. Am. Chem. Soc.
106
,
7336
(
1984
).
[9]
M.
Lang
,
F.
Holzmeier
,
P.
Hemberger
, and
I.
Fischer
,
J. Phys. Chem. A
119
,
3995
(
2015
).
[10]
A.
Röder
,
K.
Issler
,
L.
Poisson
,
A.
Humeniuk
,
M.
Wohlgemuth
,
M.
Comte
,
F.
Lepetit
,
I.
Fischer
,
R.
Mitric
, and
J.
Petersen
,
J. Chem. Phys.
147
,
013902
(
2017
).
[11]
D. H.
Tarrant
,
J. D.
Getty
,
X.
Liu
, and
P. B.
Kelly
,
J. Phys. Chem.
100
,
7772
(
1996
).
[12]
J. D.
Getty
,
X.
Liu
, and
P. B.
Kelly
,
J. Chem. Phys.
104
,
3176
(
1996
).
[13]
M.
Gasser
,
A.
Bach
, and
P.
Chen
,
Phys. Chem. Chem. Phys.
10
,
1133
(
2008
).
[14]
T.
Preitschopf
,
F.
Hirsch
,
A. K.
Lemmens
,
A. M.
Rijs
, and
I.
Fischer
,
Phys. Chem. Chem. Phys.
24
,
7682
(
2022
).
[15]
J. L.
Miller
,
J. Phys. Chem. A
108
,
2268
(
2004
).
[16]
Y.
Li
,
H. L.
Liu
,
Z. J.
Zhou
,
X. R.
Huang
, and
C. C.
Sun
,
J. Phys. Chem. A
114
,
9496
(
2010
).
[17]
J. M.
Ribeiro
and
A. M.
Mebel
,
J. Phys. Chem. A
120
,
1800
(
2016
).
[18]
R. S.
Tranter
,
A. W.
Jasper
,
J. B.
Randazzo
,
J. P.
Lockhart
, and
J. P.
Porterfield
,
Proc. Combust Inst.
36
,
211
(
2017
).
[19]
C.
Huang
,
B.
Yang
, and
F.
Zhang
,
Combust. Flame
181
,
100
(
2017
).
[20]
J.
Cho
,
A. W.
Jasper
,
Y.
Georgievskii
,
S. J.
Klippen-stein
, and
R.
Sivaramakrishnan
,
Combust. Flame
112502
(
2022
).
[21]
Y.
Song
,
M.
Lucas
,
M.
Alcaraz
,
J.
Zhang
, and
C.
Brazier
,
J. Phys. Chem. A
119
,
12318
(
2015
).
[22]
Y.
Song
,
M.
Lucas
,
M.
Alcaraz
,
J.
Zhang
, and
C.
Brazier
,
J. Chem. Phys.
136
,
044308
1
(
2012
).
[23]
G.
Amaral
,
K.
Xu
, and
J.
Zhang
,
J. Chem. Phys.
114
,
5164
(
2001
).
[24]
K.
Xu
,
G.
Amaral
, and
J.
Zhang
,
J. Chem. Phys.
111
,
6271
(
1999
).
[25]
Y.
Song
,
X.
Zheng
,
M.
Lucas
, and
J.
Zhang
,
Phys. Chem. Chem. Phys.
13
,
8296
(
2011
).
[26]
L. R.
McCunn
,
M. J.
Krisch
,
Y.
Liu
,
L. J.
Butler
, and
J.
Shu
,
J. Phys. Chem. A
109
,
6430
(
2005
).
[27]
M.
Lucas
,
J.
Minor
,
J.
Zhang
, and
C.
Brazier
,
J. Phys. Chem. A
117
,
12138
(
2013
).
[28]
R. N.
Zare
,
Mol. Photochem.
4
,
1
(
1972
).
[29]
H. J.
Deyerl
,
I.
Fischer
, and
P.
Chen
,
J. Chem. Phys.
110
,
1450
(
1999
).
[30]
Y.
Song
,
X.
Zheng
,
W.
Zhou
,
M.
Lucas
, and
J.
Zhang
,
J. Chem. Phys.
142
,
224306
(
2015
).
[31]
G.
Sun
,
X.
Zheng
,
Y.
Song
,
M.
Lucas
, and
J.
Zhang
,
J. Chem. Phys.
152
,
244303
(
2020
).
[32]
G.
Sun
,
Y.
Song
, and
J.
Zhang
,
Chin. J. Chem. Phys.
31
,
439
(
2018
).
[33]
M.
Gasser
,
J. A.
Frey
,
J. M.
Hostettler
, and
A.
Bach
,
Chem. Commun.
47
,
301
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.