Based on our previous analysis of electron affinities of atoms and structures of atomic negative ions [J. Phys. Chem. Ref. Data 51, 021502 (2022)], this review provides a concise presentation of the electron affinities of atoms. We briefly describe and compare three commonly used experimental methods for determining electron affinities to highlight their respective advantages and disadvantages. To illustrate the features of the slow electron velocity-map imaging method utilized in our current study, we conducted measurements on the electron affinity of As and excited states of its anion. The electron affinity of As was determined to be 6488.61(5) cm−1 or 0.804485(6) eV. The fine structures of As were well resolved, with values of 1029.94(18) cm−1 or 0.12770(3) eV for 3P1 and 1343.04(55) cm−1 or 0.16652(7) eV for 3P0 above the ground state 3P2, respectively.

[1]
H.
Hotop
and
W. C.
Lineberger
,
J. Phys. Chem. Ref. Data
4
,
539
(
1975
).
[2]
H.
Hotop
and
W. C.
Lineberger
,
J. Phys. Chem. Ref. Data
14
,
731
(
1985
).
[3]
T.
Andersen
,
H. K.
Haugen
, and
H.
Hotop
,
J. Phys. Chem. Ref. Data
28
,
1511
(
1999
).
[4]
J. C.
Rienstra-Kiracofe
,
G. S.
Tschumper
,
H. F.
Schaefer
,
S.
Nandi
, and
G. B.
Ellison
,
Chem. Rev.
102
,
231
(
2002
).
[7]
C.
Blondel
,
C.
Delsart
, and
F.
Dulieu
,
Phys. Rev. Lett.
77
,
3755
(
1996
).
[8]
C. G.
Ning
, and
Y. Z.
Lu
,
J. Phys. Chem. Ref. Data
51
,
021502
(
2022
).
[9]
C. W.
Walter
,
N. D.
Gibson
,
R. L.
Field
,
A. P.
Snedden
,
J. Z.
Shapiro
,
C. M.
Janczak
, and
D.
Hanstorp
,
Phys. Rev. A
80
,
014501
(
2009
).
[10]
R. J.
Peláez
,
C.
Blondel
,
M.
Vandevraye
,
C.
Drag
, and
C.
Delsart
,
J. Phys. B: Atom. Mol. Opt. Phys
44
,
195009
(
2011
).
[11]
M.
Scheer
,
H. K.
Haugen
, and
D. R.
Beck
,
Phys. Rev. Lett.
79
,
4104
(
1997
).
[12]
R. C.
Bilodeau
and
H. K.
Haugen
,
Phys. Rev. A
64
,
024501
(
2001
).
[13]
P.
Kristensen
,
U. V.
Pedersen
,
V. V.
Petrunin
,
T.
Andersen
, and
K. T.
Chung
,
Phys. Rev. A
55
,
978
(
1997
).
[14]
P.
Kristensen
,
U. V.
Pedersen
,
V. V.
Petrunin
,
T.
Andersen
, and
K. T.
Chung
,
Phys. Rev. A
56
,
1674
(
1997
).
[15]
L. M.
Blau
,
R.
Novick
, and
D.
Weinflash
,
Phys. Rev. Lett.
24
,
1268
(
1970
).
[16]
T.
Andersen
,
L. H.
Andersen
,
P.
Balling
,
H. K.
Haugen
,
P.
Hvelplund
,
W. W.
Smith
, and
K.
Taulbjerg
,
Phys. Rev. A
47
,
890
(
1993
).
[17]
S. J.
Buckma
and
C. W.
Clark
,
Rev. Mod. Phys.
66
,
539
(
1994
).
[18]
C. W.
Walter
,
J. A.
Seifert
, and
J. R.
Peterson
,
Phys. Rev. A
50
,
2257
(
1994
).
[19]
U. V.
Pedersen
,
M.
Hyde
,
S. P.
Møller
, and
T.
Andersen
,
Phys. Rev. A
64
,
012503
(
2001
).
[20]
A.
Wolf
,
K. G.
Bhushan
,
I.
Ben-Itzhak
,
N.
Altstein
,
D.
Zajfman
,
O.
Heber
, and
M. L.
Rappaport
,
Phys. Rev. A
59
,
267
(
1999
).
[21]
G.
Miecznik
,
T.
Brage
, and
C. Froese
Fischer
,
Phys. Rev. A
47
,
3718
(
1993
).
[22]
F. R.
Simpson
,
R.
Browning
, and
H. B.
Gilbody
,
J. Phys. B: Atom. Mol. Phys.
4
,
106
(
1971
).
[23]
T.
Brage
and
C. F.
Fischer
,
Phys. Rev. A
44
,
72
(
1991
).
[24]
J. B.
Fenn
,
M.
Mann
,
C. K.
Meng
,
S. F.
Wong
, and
C. M.
Whitehouse
,
Science
246
,
64
(
1989
).
[25]
R.
Middleton
,
Nucl. Instrum. Methods Phys. Res.
214
,
139
(
1983
).
[26]
V. V.
Petrunin
,
H. H.
Andersen
,
P.
Balling
, and
T.
Andersen
,
Phys. Rev. Lett.
76
,
744
(
1996
).
[27]
H. H.
Andersen
,
V. V.
Petrunin
,
P.
Kristensen
, and
T.
Andersen
,
Phys. Rev. A
55
,
3247
(
1997
).
[28]
R.
Zhang
,
Y. Z.
Lu
,
R. L.
Tang
, and
C. G.
Ning
,
J. Chem. Phys.
158
,
084303
(
2023
).
[29]
R. L.
Tang
,
X. X.
Fu
, and
C. G.
Ning
,
J. Chem. Phys.
149
,
134304
(
2018
).
[30]
X. X.
Fu
,
Z. H.
Luo
,
X. L.
Chen
,
J. M.
Li
, and
C. G.
Ning
,
J. Chem. Phys.
145
,
164307
(
2016
).
[31]
S.
Li
,
X. X.
Fu
,
X. L.
Chen
,
Y. Z.
Lu
, and
C. G.
Ning
,
J. Chem. Phys.
157
,
044302
(
2022
).
[32]
X. L.
Chen
,
Z. H.
Luo
,
J. M.
Li
, and
C. G.
Ning
,
Sci. Rep.
6
,
24996
(
2016
).
[33]
X. L.
Chen
and
C. G.
Ning
,
Phys. Rev. A
93
,
052508
(
2016
).
[34]
X. X.
Fu
,
J. M.
Li
,
Z. H.
Luo
,
X. L.
Chen
, and
C. G.
Ning
,
J. Chem. Phys.
147
,
064306
(
2017
).
[35]
Z. H.
Luo
,
X. L.
Chen
,
J. M.
Li
, and
C. G.
Ning
,
Phys. Rev. A
93
,
020501
(
2016
).
[36]
R. L.
Tang
,
X. L.
Chen
,
X. X.
Fu
,
H.
Wang
, and
C. G.
Ning
,
Phys. Rev. A
98
,
020501
(
2018
).
[37]
X. L.
Chen
and
C. G.
Ning
,
J. Phys. Chem. Lett.
8
,
2735
(
2017
).
[38]
Y. Z.
Lu
,
J.
Zhao
,
R. L.
Tang
,
X. X.
Fu
, and
C. G.
Ning
,
J. Chem. Phys.
152
,
034302
(
2020
).
[39]
Y. Z.
Lu
,
R. L.
Tang
,
X. X.
Fu
, and
C. G.
Ning
,
Phys. Rev. A
99
,
062507
(
2019
).
[40]
X. X.
Fu
,
R. L.
Tang
,
Y. Z.
Lu
, and
C. G.
Ning
,
Chin. Phys. B
29
,
073201
(
2020
).
[41]
X. X.
Fu
,
Y. Z.
Lu
,
R. L.
Tang
, and
C. G.
Ning
,
Phys. Rev. A
101
,
022502
(
2020
).
[42]
X. X.
Fu
,
R. L.
Tang
,
Y. Z.
Lu
, and
C. G.
Ning
,
Chin. J. Chem. Phys.
32
,
187
(
2019
).
[43]
R. L.
Tang
,
R.
Si
,
Z. J.
Fei
,
X. X.
Fu
,
Y. Z.
Lu
,
T.
Brage
,
H. T.
Liu
,
C. Y.
Chen
, and
C. G.
Ning
,
Phys. Rev. Lett.
123
,
203002
(
2019
).
[44]
R. L.
Tang
,
R.
Si
,
Z. J.
Fei
,
X. X.
Fu
,
Y. Z.
Lu
,
T.
Brage
,
H. T.
Liu
,
C. Y.
Chen
, and
C. G.
Ning
,
Phys. Rev. A
103
,
042817
(
2021
).
[45]
R. L.
Tang
,
Y. Z.
Lu
,
H. T.
Liu
, and
C. G.
Ning
,
Phys. Rev. A
103
,
L050801
(
2021
).
[46]
R. S.
Berry
,
J. C.
Mackie
,
R. L.
Taylor
, and
R.
Lynch
,
J. Chem. Phys.
43
,
3067
(
2004
).
[47]
W. C.
Lineberger
and
B. W.
Woodward
,
Phys. Rev. Lett.
25
,
424
(
1970
).
[48]
[49]
M. K.
Kristiansson
,
K.
Chartkunchand
,
G.
Eklund
,
O. M.
Hole
,
E. K.
Anderson
,
N.
de Ruette
,
M.
Kamińska
,
N.
Punnakayathil
,
J. E.
Navarro-Navarrete
,
S.
Sigurdsson
,
J.
Grumer
,
A.
Simonsson
,
M.
Björkhage
,
S.
Rosén
,
P.
Reinhed
,
M.
Blom
,
A.
Källberg
,
J. D.
Alexander
,
H.
Cederquist
,
H.
Zettergren
,
H. T.
Schmidt
, and
D.
Hanstorp
,
Nat. Commun.
13
,
5906
(
2022
).
[50]
C.
Blondel
,
C.
Delsart
,
F.
Dulieu
, and
C.
Valli
,
Eur. Phys. J. D
5
,
207
(
1999
).
[51]
C.
Blondel
,
S.
Berge
, and
C.
Delsart
,
Am. J. Phys.
69
,
810
(
2001
).
[52]
C.
Delsart
,
F.
Goldfarb
, and
C.
Blondel
,
Phys. Rev. Lett.
89
,
183002
(
2002
).
[53]
C.
Blondel
,
W.
Chaibi
,
C.
Delsart
,
C.
Drag
,
F.
Goldfarb
, and
S.
Kröger
,
Eur. Phys. J. D
33
,
335
(
2005
).
[54]
W.
Chaibi
,
C.
Blondel
,
C.
Delsart
, and
C.
Drag
,
Europhys. Lett.
82
,
20005
(
2008
).
[55]
A. T. J. B.
Eppink
and
D. H.
Parker
,
Rev. Sci. Instrum.
68
,
3477
(
1997
).
[56]
A.
Osterwalder
,
M. J.
Nee
,
J.
Zhou
, and
D. M.
Neumark
,
J. Chem. Phys.
121
,
6317
(
2004
).
[57]
D. M.
Neumark
,
J. Phys. Chem. A
112
,
13287
(
2008
).
[58]
I.
León
,
Z.
Yang
,
H. T.
Liu
, and
L. S.
Wang
,
Rev. Sci. Instrum.
85
,
083106
(
2014
).
[59]
R.
Tang
,
X.
Fu
,
Y.
Lu
, and
C.
Ning
,
J. Chem. Phys.
152
,
114303
(
2020
).
[60]
W. C.
Wiley
and
I. H.
McLaren
,
Rev. Sci. Instrum.
26
,
1150
(
1955
).
[61]
W. A.
de Heer
and
P.
Milani
,
Rev. Sci. Instrum.
62
,
670
(
1991
).
[63]
J.
Cooper
and
R. N.
Zare
,
J. Chem. Phys.
48
,
942
(
2003
).
[64]
J.
Cooper
and
R. N.
Zare
,
J. Chem. Phys.
49
,
4252
(
1968
).
[65]
D.
Hanstorp
,
C.
Bengtsson
, and
D. J.
Larson
,
Phys. Rev. A
40
,
670
(
1989
).
[66]
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
131
,
124114
(
2009
).
[68]
Y.
Liu
and
C. G.
Ning
,
J. Chem. Phys.
143
,
144310
(
2015
).
[69]
V.
Dribinski
,
A.
Ossadtchi
,
V. A.
Mandelshtam
, and
H.
Reisler
,
Rev. Sci. Instrum.
73
,
2634
(
2002
).
[70]
G. A.
Garcia
,
L.
Nahon
, and
I.
Powis
,
Rev. Sci. Instrum.
75
,
4989
(
2004
).
[71]
B.
Dick
,
Phys. Chem. Chem. Phys.
16
,
570
(
2014
).
[72]
B.
Dick
,
Phys. Chem. Chem. Phys.
21
,
19499
(
2019
).
[73]
R. C.
Bilodeau
and
H. K.
Haugen
,
Phys. Rev. Lett.
85
,
534
(
2000
).
[74]
Y.
Lu
,
R.
Zhang
,
C.
Song
,
C.
Chen
,
R.
Si
, and
C.
Ning
,
Chin. Phys. Lett.
40
,
093101
(
2023
).
[75]
J. E.
Sansonetti
, and
W. C.
Martin
,
J. Phys. Chem. Ref. Data
34
,
1559
(
2005
).
[76]
L. E.
Howard
and
K. L.
Andrew
,
J. Opt. Soc. Am. B
2
,
1032
(
1985
).
[77]
A. E.
Kramida
,
Comput. Phys. Commun.
182
,
419
(
2011
).
[78]
L. J.
Radziemski
,
K. J.
Fisher
,
D. W.
Steinhaus
, and
A. S.
Goldman
,
Comput. Phys. Commun.
3
,
9
(
1972
).
[79]
E.
Tiesinga
,
P. J.
Mohr
,
D. B.
Newell
, and
B. N.
Taylor
,
The 2018 CODATA Recommended Values of the Fundamental Physical Constants,
In: http://physics.nist.gov/constants.
[80]
G.
Haeffler
,
A. E.
Klinkmüller
,
J.
Rangell
,
U.
Berzinsh
, and
D.
Hanstorp
,
Z. Phys. D: At. Mol. Clusters
38
,
211
(
1996
).
[81]
X. L.
Chen
and
C. G.
Ning
,
J. Chem. Phys.
145
,
084303
(
2016
).
[82]
T.
Carette
,
C.
Drag
,
O.
Scharf
,
C.
Blondel
,
C.
Delsart
,
C. Froese
Fischer
, and
M.
Godefroid
,
Phys. Rev. A
81
,
042522
(
2010
).
[83]
R. J.
Peláez
,
C.
Blondel
,
C.
Delsart
, and
C.
Drag
,
J. Phys. B: At. Mol. Opt. Phys.
42
,
125001
(
2009
).
[84]
D.
Bresteau
,
C.
Drag
, and
C.
Blondel
,
J. Phys. B: At. Mol. Opt. Phys.
52
,
065001
(
2019
).
[85]
C. W.
Walter
,
F. E.
Vassallo
, and
N. D.
Gibson
,
Phys. Rev. A
106
,
L010801
(
2022
).
[86]
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and NIST ASD Team (2022), In:
NIST Atomic Spectra Database (version 5.10)
, [Online]. Available at https://physics.nist.gov/asd [Tue Jul 18 2023].
National Institute of Standards and Technology
,
Gaithersburg, MD
. DOI: .
[87]
Y. Z.
Lu
,
R. L.
Tang
,
R.
Zhang
, and
C. G.
Ning
,
J. Phys. Chem. Lett.
13
,
8711
(
2022
).
[88]
Y. Z.
Lu
and
C. G.
Ning
,
J. Phys. Chem. Lett.
13
,
4995
(
2022
).
[89]
Y. Z.
Lu
,
R. L.
Tang
,
X. X.
Fu
,
H. T.
Liu
, and
C. G.
Ning
,
J. Chem. Phys.
154
,
074303
(
2021
).
[90]
Y. T.
Wang
,
C. G.
Ning
,
H. T.
Liu
, and
L. S.
Wang
,
J. Phys. Chem. A
124
,
5720
(
2020
).
[91]
D.
Feldmann
,
R.
Rackwitz
,
E.
Heinicke
, and
H. J.
Kaiser
,
Z. Phys. A
282
,
143
(
1977
).
[92]
G.
Haeffler
,
U.
Ljungblad
,
I. Y.
Kiyan
, and
D.
Hanstorp
,
Z. Phys. D: At. Mol. Clusters
42
,
263
(
1997
).
[93]
T. P.
Lippa
,
S. J.
Xu
,
S. A.
Lyapustina
,
J. M.
Nilles
, and
K. H.
Bowen
,
J. Chem. Phys.
109
,
10727
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.