The high reaction barrier of the oxygen evolution reaction (OER) has always been the bottleneck of the water decomposition reaction, so low-cost, high-performance and stable catalysts are urgently needed currently. Herein, we designed an effective OER electrocatalyst BaCo0.6Fe0.2Ni0.2O3−δ (BCFN) by a codoping strategy. The overpotential of BCFN at a current density of 10 mA/cm2 reaches 310 mV, and possesses a Tafel slope of 50.2 mV/dec. The catalytic capability of BCFN is much stronger than that of Fe-doped BaCo0.8Fe0.2O3−δ (360 mV), Ni-doped BaCo0.8Ni0.2O3−δ (375 mV), and benchmark IrO2 with excellent performance (329 mV). At the same time, BCFN is also a fairly stable alkaline OER catalyst. After 500-cycle scans, BCFN still shows high catalytic activity without significant decrease in catalytic performance. Electrochemical experiments show that BCFN has the fastest reaction kinetics and the lowest charge transfer resistance among the materials in this work. In addition, a large amount of highly oxidative oxygen O22−/O and hydroxyl groups OH on the surface of BCFN are conducive to the occurrence of OER, thereby increasing the reaction rate. This work provides a universal strategy to develop high-performance electrocatalysts for electrochemical energy conversion technology.

[1]
G.
Yang
,
C.
Su
,
H.
Shi
,
Y.
Zhu
,
Y.
Song
,
W.
Zhou
, and
Z.
Shao
,
Energy Fuels
34
,
15169
(
2020
).
[2]
L.
Ye
and
K.
Xie
,
J. Energy Chem.
54
,
736
(
2021
).
[3]
W.
Wang
,
M.
Xu
,
X.
Xu
,
W.
Zhou
, and
Z.
Shao
,
Angew. Chem. Int. Ed.
59
,
136
(
2020
).
[4]
Q.
Lu
,
X.
Zou
,
Y.
Bu
,
K.
Liao
,
W.
Zhou
, and
Z.
Shao
,
Small
18
,
e2105604
(
2022
).
[5]
Y.
Cheng
,
C.
Xu
,
L.
Jia
,
J. D.
Gale
,
L.
Zhang
,
C.
Liu
,
P. K.
Shen
, and
S. P.
Jiang
,
Appl. Catal. B
163
,
96
(
2015
).
[6]
M.
Ledendecker
,
G.
Clavel
,
M.
Antonietti
, and
M.
Shalom
,
Adv. Funct. Mater.
25
,
393
(
2015
).
[7]
M.
Li
,
Y.
Xiong
,
X.
Liu
,
X.
Bo
,
Y.
Zhang
,
C.
Han
, and
L.
Guo
,
Nanoscale
7
,
8920
(
2015
).
[8]
S.
Feng
,
L.
Yang
,
Z.
Zhang
,
Q.
Li
, and
D.
Xu
,
ACS Appl. Energy Mater.
3
,
943
(
2020
).
[9]
X.
Xu
,
C.
Su
, and
Z.
Shao
,
Energy Fuels
35
,
13585
(
2021
).
[10]
Y. F.
Sun
,
Y. Q.
Zhang
,
J.
Chen
,
J. H.
Li
,
Y. T.
Zhu
,
Y. M.
Zeng
,
B. S.
Amirkhiz
,
J.
Li
,
B.
Hua
, and
J. L.
Luo
,
Nano Lett.
16
,
5303
(
2016
).
[11]
L.
Han
,
S.
Dong
, and
E.
Wang
,
Adv. Mater.
28
,
9266
(
2016
).
[12]
D. A.
Agyeman
,
Y.
Zheng
,
T. H.
Lee
,
M.
Park
,
W.
Tamakloe
,
G. H.
Lee
,
H. W.
Jang
,
K.
Cho
, and
Y. M.
Kang
,
ACS Catal.
11
,
424
(
2020
).
[13]
D.
Liu
,
H.
Ai
,
J.
Li
,
M.
Fang
,
M.
Chen
,
D.
Liu
,
X.
Du
,
P.
Zhou
,
F.
Li
,
K. H.
Lo
,
Y.
Tang
,
S.
Chen
,
L.
Wang
,
G.
Xing
, and
H.
Pan
,
Adv. Energy Mater.
10
,
2002464
(
2020
).
[14]
Y. H.
Wang
,
W. J.
Jiang
,
W.
Yao
,
Z. L.
Liu
,
Z.
Liu
,
Y.
Yang
, and
L. Z.
Gao
,
Rare Met.
40
,
2327
(
2021
).
[15]
P. N.
Panahi
,
M. H.
Rasoulifard
, and
S.
Babaei
,
Rare Met.
39
,
139
(
2020
).
[16]
L.
Dai
,
X. B.
Lu
,
G. H.
Chu
,
C. H.
He
,
W. C.
Zhan
, and
G. J.
Zhou
,
Rare Met.
40
,
555
(
2021
).
[17]
Y.
Matsumoto
,
S.
Yamada
, and
T.
Nishida
,
J. Electrochem. Soc.
127
,
2360
(
1980
).
[18]
A.
Grimaud
,
K. J.
May
,
C. E.
Carlton
,
Y. L.
Lee
,
M.
Risch
,
W. T.
Hong
,
J.
Zhou
, and
Y.
Shao-Horn
,
Nat. Commun.
4
,
2439
(
2013
).
[19]
B. J.
Kim
,
E.
Fabbri
,
D. F.
Abbott
,
X.
Cheng
,
A. H.
Clark
,
M.
Nachtegaal
,
M.
Borlaf
,
I. E.
Castelli
,
T.
Graule
, and
T. J.
Schmidt
,
J. Am. Chem. Soc.
141,
5231
(
2019
).
[20]
S.
Gupta
,
W.
Kellogg
,
H.
Xu
,
X.
Liu
,
J.
Cho
, and
G.
Wu
,
Chem. Asian J.
11
,
10
(
2016
).
[21]
X.
Xu
,
C.
Su
,
W.
Zhou
,
Y.
Zhu
,
Y.
Chen
, and
Z.
Shao
,
Adv. Sci.
3
,
1500187
(
2016
).
[22]
Q.
Xu
,
S.
Song
,
Y.
Zhang
,
Y.
Wang
,
J.
Zhang
,
Y.
Ruan
, and
M.
Han
,
Electrochim. Acta
191
,
577
(
2016
).
[23]
K.
Li
,
M.
Yin
,
Z.
Wang
,
X.
Chen
,
T.
Zhu
,
J.
Wang
,
N.
Dewangan
,
Y.
Yu
,
Q.
Zhong
, and
S.
Kawi
,
ChemistrySelect
3
,
12424
(
2018
).
[24]
C.
Jin
,
X.
Cao
,
F.
Lu
,
Z.
Yang
, and
R.
Yang
,
Int. J. Hydrog. Energy
38
,
10389
(
2013
).
[25]
H.
Jo
,
Y.
Yang
,
A.
Seong
,
D.
Jeong
,
J.
Kim
,
S. H.
Joo
,
Y. J.
Kim
,
L.
Zhang
,
Z.
Liu
,
J. Q.
Wang
,
S. K.
Kwak
, and
G.
Kim
,
J. Mater. Chem. A
10
,
2271
(
2022
).
[26]
F.
Dong
,
M.
Ni
,
Y.
Chen
,
D.
Chen
,
M. O.
Tadé
, and
Z.
Shao
,
J. Mater. Chem. A
2
,
20520
(
2014
).
[27]
L.
Tang
,
Y.
Rao
,
L.
Wei
,
H.
Zheng
,
H.
Liu
,
W.
Zhang
, and
K.
Tang
,
Chin. J. Chem.
39
,
2692
(
2021
).
[28]
C.
Bernard
,
B.
Durand
, and
M.
Verelst
,
J. Mater. Sci.
39,
2821
(
2004
).
[29]
L.
Zhu
,
G.
Lu
,
Y.
Wang
,
Y.
Guo
, and
Y.
Guo
,
Chin. J. Catal.
31
,
1006
(
2010
).
[30]
X.
Liu
,
W. Y.
Huang
,
Q.
Zhou
,
X. R.
Chen
,
K.
Yang
,
D.
Li
, and
D. D.
Dionysiou
,
Rare Met.
40
,
1086
(
2020
).
[31]
G.
Pecchi
,
C.
Campos
, and
O.
Peña
,
Mater. Res. Bull.
44
,
846
(
2009
).
[32]
M. A. Salguero
Salas
,
J. M.
De Paoli
,
O. E. Linarez
Perez
,
N.
Bajales
, and
V. C.
Fuertes
,
Microporous Mesoporous Mater.
293
,
109797
(
2020
).
[33]
A.
Raj
,
M.
Kumar
,
D.
Mishra
, and
A.
Anshul
,
Opt. Mater.
101
,
109773
(
2020
).
[34]
K. J.
May
,
C. E.
Carlton
,
K. A.
Stoerzinger
,
M.
Risch
,
J.
Suntivich
,
Y. L.
Lee
,
A.
Grimaud
, and
Y.
Shao-Horn
,
J. Phys. Chem. Lett.
3
,
3264
(
2012
).
[35]
J. I.
Jung
and
D. D.
Edwards
,
J. Solid State Chem.
184
,
2238
(
2011
).
[36]
Q.
Luo
,
D.
Lin
,
W.
Zhan
,
W.
Zhang
,
L.
Tang
,
J.
Luo
,
Z.
Gao
,
P.
Jiang
,
M.
Wang
,
L.
Hao
, and
K.
Tang
,
ACS Appl. Energy Mater.
3
,
7149
(
2020
).
[37]
L.
Tang
,
W.
Zhang
,
D.
Lin
,
Y.
Ren
,
H.
Zheng
,
Q.
Luo
,
L.
Wei
,
H.
Liu
,
J.
Chen
, and
K.
Tang
,
Inorg. Chem. Front.
7
,
4488
(
2020
).
[38]
F.
Dong
,
L.
Li
,
Z.
Kong
,
X.
Xu
,
Y.
Zhang
,
Z.
Gao
,
B.
Dongyang
,
M.
Ni
,
Q.
Liu
, and
Z.
Lin
,
Small
17,
2006638
(
2021
).
[39]
X.
Xu
,
Y.
Chen
,
W.
Zhou
,
Z.
Zhu
,
C.
Su
,
M.
Liu
, and
Z.
Shao
,
Adv. Mater.
28
,
6442
(
2016
).
[40]
P.
Anand
,
M. S.
Wong
, and
Y. P.
Fu
,
Sustain. Energy Fuels
5
,
4858
(
2021
).
[41]
C.
Hu
,
X.
Wang
,
T.
Yao
,
T.
Gao
,
J.
Han
,
X.
Zhang
,
Y.
Zhang
,
P.
Xu
, and
B.
Song
,
Adv. Funct. Mater.
29
,
1902449
(
2019
).
[42]
G.
Zhang
and
J. H.
Li
,
Chin. J. Chem. Phys.
31
,
517
(
2018
).
[43]
D.
Aegerter
,
M.
Borlaf
,
E.
Fabbri
,
A. H.
Clark
,
M.
Nachtegaal
,
T.
Graule
, and
T. J.
Schmidt
,
Catalysts
10
,
984
(
2020
).
[44]
E.
Fabbri
,
M.
Nachtegaal
,
X.
Cheng
, and
T. J.
Schmidt
,
Adv. Energy Mater.
5
,
1402033
(
2015
).
[45]
S.
She
,
Y.
Zhu
,
X.
Wu
,
Z.
Hu
,
A.
Shelke
,
W. F.
Pong
,
Y.
Chen
,
Y.
Song
,
M.
Liang
,
C. T.
Chen
,
H.
Wang
,
W.
Zhou
, and
Z.
Shao
,
Adv. Funct. Mater.
32,
2111091
(
2021
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.