Single-molecule spin logic gates provide fundamental functions and are of importance in the field of molecular spintronics. Here, by using the firstprinciples method, the effects of ambient gas molecules (CO2, O2, N2, or H2O) on the functional stability of the investigated single-molecule spin logic gate consisting of two serially connected cobalt dibenzotetraaza[14]annulene (CoDBTAA) molecules between single-walled carbon nanotubes (SWCNTs) electrodes, have been theoretically investigated. The calculated results suggest that the investigated spin logic gate can realize AND, NOR, or XNOR logic functions depending on the definition of the input and output signals. It is found that these logic functions are not affected by CO2 adsorption. On the contrary, these logic functions are no longer retained upon O2, N2, or H2O adsorption. Further analysis reveals that the interaction between the CoDBTAA molecule and the CO2 adsorbate is very weak while it is strong for O2, N2, or H2O molecules. Therefore, the electronic states of the logic gate around Fermi energy (EF) are almost unchanged for CO2 adsorption. While the adsorption of O2, N2, or H2O obviously modifies the electronic states around EF. The strong interaction between CoDBTAA and these three gas adsorbates drives the conductive electronic states to move far away from EF, resulting in the blocking of both spin-up and spin-down currents and further voiding the logic functions. This work suggests that ambient air has an important effect on the functional stability of single-molecule devices and should be carefully evaluated in the future design of functional single-molecule devices.

[1]
A.
Aviram
and
M. A.
Ratner
,
Chem. Phys. Lett.
29,
277
(
1974
).
[2]
D.
Xiang
,
X.
Wang
,
C.
Jia
,
T.
Lee
, and
X.
Guo
,
Chem. Rev.
116
,
4318
(
2016
).
[3]
A.
Vilan
,
D.
Aswal
, and
D.
Cahen
,
Chem. Rev.
117
,
4248
(
2017
).
[4]
T. A.
Su
,
M.
Neupane
,
M. L.
Steigerwald
,
L.
Venkataraman
, and
C.
Nuckolls
,
Nat. Rev. Mater.
1
,
16002
(
2016
).
[5]
L.
Sun
,
Y. A.
Diaz-Fernandez
,
T. A.
Gschneidtner
,
F.
Westerlund
,
S.
Lara-Avila
, and
K.
Moth-Poulsen
,
Chem. Soc. Rev.
43
,
7378
(
2014
).
[6]
C. K.
Wang
,
Y.
Fu
, and
Y.
Luo
, Phys.
Chem. Chem. Phys.
3
,
5017
(
2001
).
[7]
M.
Brandbyge
,
J. L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
,
Phys. Rev. B
65
,
165401
(
2002
).
[8]
R.
Liu
,
C. K.
Wang
, and
Z. L.
Li
,
Sci. Rep.
6
,
21946
(
2016
).
[9]
M. A.
Reed
,
C.
Zhou
,
C.
Muller
,
T.
Burgin
, and
J.
Tour
,
Science
278
,
252
(
1997
).
[10]
[11]
M. Z.
Wei
,
Z. Q.
Wang
,
X. X.
Fu
,
G. C.
Hu
,
Z. L.
Li
,
C. K.
Wang
, and
G. P.
Zhang
,
Physica E
103
,
397
(
2018
).
[12]
R.
Liu
,
J. J.
Bi
,
Z.
Xie
,
K.
Yin
,
D.
Wang
,
G. P.
Zhang
,
D.
Xiang
,
C. K.
Wang
, and
Z. L.
Li
,
Phys. Rev. Appl.
9
,
054023
(
2018
).
[13]
B.
Capozzi
,
J.
Xia
,
O.
Adak
,
E. J.
Dell
,
Z. F.
Liu
,
J. C.
Taylor
,
J. B.
Neaton
,
L. M.
Campos
, and
L.
Venkataraman
,
Nat. Nanotech.
10
,
522
(
2015
).
[14]
C.
Van Dyck
and
M. A.
Ratner
,
Nano Lett.
15
,
1577
(
2015
).
[15]
Z. Q.
Wang
,
M. Z.
Wei
,
M. M.
Dong
,
G. C.
Hu
,
Z. L.
Li
,
C. K.
Wang
, and
G. P.
Zhang
,
J. Phys. Chem. C
122
,
17650
(
2018
).
[16]
C.
Jia
,
A.
Migliore
,
N.
Xin
,
S.
Huang
,
J.
Wang
,
Q.
Yang
,
S.
Wang
,
H.
Chen
,
D.
Wang
,
B.
Feng
,
Z.
Liu
,
Z.
Guangyu
,
D. H.
Qu
,
H.
Tian
,
M. A.
Ratner
,
H. Q.
Xu
,
A.
Nitzan
, and
X.
Guo
,
Science
352
,
1443
(
2016
).
[17]
D.
Weckbecker
,
P.
Coto
, and
M.
Thoss
,
Nano Lett.
17
,
3341
(
2017
).
[18]
G.
Tian
,
D.
Sun
,
Y.
Zhang
, and
X.
Yu
,
Angew. Chem. Int. Ed.
58
,
5951
(
2019
).
[19]
L.
Ma
,
G.
Tian
, and
J. T.
,
Phys. Rev. B
106
,
165416
(
2022
).
[20]
H.
Song
,
Y.
Kim
,
Y. H.
Jang
,
H.
Jeong
,
M. A.
Reed
, and
T.
Lee
,
Nature
462
,
1039
(
2009
).
[21]
D.
Sun
,
L.
Li
,
X.
Yu
, and
G.
Tian
,
Phys. Rev. B
99
,
125423
(
2019
).
[22]
C.
Nacci
,
F.
Ample
,
D.
Bleger
,
S.
Hecht
,
C.
Joachim
, and
L.
Grill
,
Nat. Commun.
6
,
7397
(
2015
).
[23]
C. E.
Smith
,
S. O.
Odoh
,
S.
Ghosh
,
L.
Gagliardi
,
C. J.
Cramer
, and
C. D.
Frisbie
,
J. Am. Chem. Soc.
137
,
15732
(
2015
).
[24]
G.
Kuang
,
S. Z.
Chen
,
W.
Wang
,
T.
Lin
,
K.
Chen
,
X.
Shang
,
P. N.
Liu
, and
N.
Lin
,
J. Am. Chem. Soc.
138
,
11140
(
2016
).
[25]
V.
Dediu
,
M.
Murgia
,
F.
Matacotta
,
C.
Taliani
, and
S.
Barbanera
,
Solid State Commun.
122
,
181
(
2002
).
[26]
A. R.
Rocha
,
V. M.
García-Suárez
,
S. W.
Bailey
,
C. J.
Lambert
,
J.
Ferrer
, and
S.
Sanvito
,
Nat. Mater.
4
,
335
(
2005
).
[27]
[28]
M.
Sun
and
W.
Mi
,
J. Mater. Chem. C
6
,
6619
(
2018
).
[29]
M.
Urdampilleta
,
S.
Klayatskaya
,
M.
Ruben
, and
W.
Wernsdorfer
,
ACS Nano
9
,
4458
(
2015
).
[30]
A.
Bedoya-Pinto
,
S. G.
Miralles
,
S.
Vélez
,
A.
Atxabal
,
P.
Gargiani
,
M.
Valvidares
,
F.
Casanova
,
E.
Coronado
, and
L. E.
Hueso
,
Adv. Funct. Mater.
28
,
1702099
(
2018
).
[31]
G. P.
Zhang
,
Y. Q.
Mu
,
M. Z.
Wei
,
S.
Wang
,
H.
Huang
,
G. C.
Hu
,
Z. L.
Li
, and
C. K.
Wang
,
J. Mater. Chem. C
6
,
2105
(
2018
).
[32]
X. K.
Hong
,
Y. W.
Kuang
,
C.
Qian
,
Y. M.
Tao
,
H. L.
Yu
,
D. B.
Zhang
,
Y. S.
Liu
,
J. F.
Feng
,
X. F.
Yang
, and
X. F.
Wang
,
J. Phys. Chem. C
120
,
668
(
2016
).
[33]
Y. J.
Li
,
L. Y.
Chen
,
Y. H.
Xia
,
J. M.
Zhao
,
Y. Q.
Mu
,
G. P.
Zhang
, and
Y.
Song
,
Physica E
134
,
114896
(
2021
).
[34]
Y.
Song
,
C. K.
Wang
,
G.
Chen
, and
G. P.
Zhang
,
Phys. Chem. Chem. Phys.
23
,
18760
(
2021
).
[35]
S.
Kaley
and
S.
Chakrabarti
,
J. Phys. Chem. C
121
,
21695
(
2017
).
[36]
M.
Zeng
,
L.
Shen
,
H.
Su
,
C.
Zhang
, and
Y.
Feng
,
Appl. Phys. Lett.
98
,
092110
(
2011
).
[37]
W.
Zhao
,
D.
Zou
,
C. L.
Yang
, and
Z.
Sun
,
J. Mater. Chem. C
5
,
8862
(
2017
).
[38]
J.
Zeng
and
K. Q.
Chen
,
Phys. Chem. Chem. Phys.
20
,
3997
(
2018
).
[39]
H.
Khaledi
,
M. M.
Olmstead
,
H. Mohd
Ali
, and
N. F.
Thomas
,
Inorg. Chem.
52
,
1926
(
2013
).
[40]
Q.
Wu
,
P.
Zhao
,
Y.
Su
,
S.
Li
,
J.
Guo
, and
G.
Chen
,
RSC Adv.
5
,
52938
(
2015
).
[41]
Z. Q.
Wang
,
F.
Tang
,
M. M.
Dong
,
M. L.
Wang
,
G. C.
Hu
,
J. C.
Leng
,
C. K.
Wang
, and
G. P.
Zhang
,
Chin. Phys. B
29
,
067202
(
2020
).
[42]
H.
Kondo
,
J.
Nara
, and
T.
Ohno
,
J. Phys. Chem. C
115
,
6886
(
2011
).
[43]
J.
Zeng
,
K. Q.
Chen
, and
M.
Long
,
Org. Electron.
58
,
216
(
2018
).
[44]
D.
Zou
,
W.
Zhao
,
B.
Cui
,
D.
Li
, and
D.
Liu
,
Phys. Chem. Chem. Phys.
20
,
2048
(
2018
).
[45]
T.
Omiya
,
P.
Poli
,
H.
Arnolds
,
R.
Raval
,
M.
Persson
, and
Y.
Kim
,
Chem. Commun.
53
,
6148
(
2017
).
[46]
W.
Zhao
,
D.
Zou
,
Z.
Sun
,
Y.
Yu
, and
C.
Yang
,
Phys. Lett. A
382
,
2666
(
2018
).
[47]
F.
Li
,
J.
Huang
,
J.
Wang
, and
Q.
Li
,
Molecules
24
,
1747
(
2019
).
[48]
QuantumATK version 0-2018.06, Synopsys QuantumATK (https://www.synopsys.com/silicon/quantumatk.html).
[49]
S.
Smidstrup
,
T.
Markussen
,
P.
Vancraeyveld
,
J.
Wellendorff
,
J.
Schneider
,
T.
Gunst
,
B.
Verstichel
,
D.
Stradi
,
P. A.
Khomyakov
,
U. G.
Vej-Hansen
,
M. E.
Lee
,
S. T.
Chill
,
F.
Rasmussen
,
G.
Penazzi
,
F.
Corsetti
,
A.
Ojanperä
,
K.
Jensen
,
M. L. N.
Palsgaard
,
U.
Martinez
,
A.
Blom
,
M.
Brandbyge
, and
K.
Stokbro
,
J. Phys.: Condens. Matter
32
,
015901
(
2020
).
[50]
J.M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
[51]
Y.
Sun
,
K.
Chen
,
L.
Jia
, and
H.
Li
,
Phys. Chem. Chem. Phys.
13
,
13800
(
2011
).
[52]
M.
Büttiker
,
Y.
Imry
,
R.
Landauer
, and
S.
Pinhas
,
Phys. Rev. B
31
,
6207
(
1985
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.