A case study has been performed on the adaptability of electron-localization strategy in designing clusters with planar tetracoordinate nitrogen (ptN) through the detailed comparison between ptN clusters NLi3E+ (E=N, P, As) and their planar tetracoordinate carbon (ptC) counterparts CLi3E (E=N, P, As). The results revealed that NLi3E+ clusters possessed similar planar geometries to CLi3E, which are both determined by the existence of a localized π bond. Nevertheless, NLi3E+ clusters possess the obviously higher electronic, thermodynamic, and dynamic stabilities than CLi3E clusters, as reflected by wider HOMO-LUMO gaps (4.58-4.68 eV versus 2.10–2.74 eV), the overall lower-lying positions on potential energy surfaces verified at the CCSD(T)/aug-cc-pVTZ level, and better rigidity during the molecular dynamic simulations at the PBE/DZVP level. Therefore, our results suggest that electron-localization strategy may be more suitable for designing the clusters, whose central atom possesses relatively higher electronegativity and more favours the localized bond. Due to the good stability, the cationic NLi3E+ clusters designed in this work may be suitable for gas phase generation, mass-selection, and spectroscopic characterization.

[1]
R.
Hoffmann
,
R. W.
Alder
, and
C. F.
Wilcox
,
J. Am. Chern. Soc.
92
,
4992
(
1970
).
[2]
J. H.
van’t Hoff
,
Arch. Neerl. Sci. Exactes Nat.
9
,
445
(
1874
).
[3]
J. A.
LeBel
,
Bull. Soc. Chim. Fr.
22
,
337
(
1874
).
[4]
R.
Hoffmann
,
Pure. Appl. Chem.
28
,
181
(
1971
).
[5]
K.
Sorger
and
P. v. R.
Schleyer
,
J. Mol. Struct.: THEOCHEM
338
,
317
(
1995
).
[6]
L.
Radom
and
D. R.
Rasmussen
,
Pure Appl. Chern.
70
,
1977
(
1998
).
[7]
D.
Rottger
and
G.
Erker
,
Angew. Chem. Int. Ed. Engl.
36
,
812
(
1997
).
[8]
W.
Siebert
and
A.
Gunale
,
Chern. Soc. Rev.
28
,
367
(
1999
).
[9]
R.
Chouluoun
and
P.
Cassoux
,
Ace. Chern. Res.
32
,
494
(
1999
).
[10]
L. S.
Wang
,
A. I.
Boldyrev
,
X.
Li
, and
J.
Simons
,
J. Am. Chern. Soc.
122
,
7681
(
2000
).
[11]
J. B.
Collins
,
J.D.
Dill
,
E. D.
Jemmis
,
Y.
Apeloig
,
P. v. R.
Schleyer
,
R.
Seeger
, and
J. A.
Pople
,
J. Am. Chern. Soc.
98
,
5419
(
1976
).
[12]
L. M.
Yang
,
E.
Ganz
,
Z.
Chen
,
Z. X.
Wang
, and
P. v. R.
Schleyer
,
Angew. Chern. Int.
Ed.
54
,
9468
(
2015
).
[13]
V. Va.
ssilev-Galindo
,
S.
Pan
,
K. J.
Donald
, and
G.
Merino
,
Nat. Rev. Chern.
2
,
0114
(
2018
).
[14]
P.
Liu
,
J. H.
Bian
,
Q.
Wang
,
F.
Huang
,
D.
Li
, and
Y. B.
Wu
,
Phys. Chern. Chern. Phys.
20
,
12542
(
2018
).
[15]
X. F.
Zhao
,
J. H.
Bian
,
F.
Huang
,
C.
Yuao
,
Q.
Waog
,
P.
Liu
,
D.
Li
,
X.
Wang
, and
Y. B.
Wu
,
RSC Adv.
8
,
36521
(
2018
).
[16]
S.
Pan
,
J. L.
Cabellos
,
M.
Orozco-Ic
,
P. K.
Chattaraj
,
L.
Zhoo
, and
G.
Merino
,
Phys. Chem. Chern. Phys.
20
,
12350
(
2018
).
[17]
J. C.
Guo
,
L. Y.
Fang
,
C.
Dong
, and
H. J.
Zhai
,
J. Phys. Chern. A
122
,
8370
(
2018
).
[18]
J. C.
Guo
,
L. Y.
Feng
,
J.
Barroeo
,
G.
Merino
, and
H. J.
Zhai
,
Chern. Cornmun.
56
,
8305
(
2020
).
[19]
M. H.
Wang
,
X.
Dong
,
Y. H.
Ding
, and
Z. H.
Cui
,
Chem. Commun.
56
,
7285
(
2020
).
[20]
R.
Sun
,
X. F.
Zhao
,
B.
Jin
,
B.
Huo
,
J. H.
Bian
,
X. L.
Guan
,
C.
Yuan
, and
Y. B.
Wu
, Phys.
Chern. Chem. Phys.
22
,
17062
(
2020
).
[21]
J. H.
Bian
,
B.
Jin
,
X. F.
Zhao
,
R.
Sun
,
C.
Yuan
,
C. Y.
Zhou
, and
Y. B.
Wu
,
RSC Adv.
11
,
15841
(
2021
).
[22]
B.
Jin
,
R.
Sun
,
B.
Huo
,
C.
Yuan
, and
Y. B.
Wu
,
Chern. Commun.
57
,
13716
(
2021
).
[23]
R.
Sun
,
B.
Jin
,
B.
Huo
,
C.
Yuan
,
H. J.
Zhai
, and
Y. B.
Wu
,
Chern. Commun.
58
,
2552
(
2022
).
[24]
B.
Jin
and
Z. R.
Wang
,
Phys. Chern. Chern. Phys.
24
,
17956
(
2022
).
[25]
Z. H.
Cui
,
C. B.
Shao
,
S. M.
Gao
, and
Y. H.
Ding
,
Phys. Chern. Chern. Phys.
12
,
13637
(
2010
).
[26]
Z. H.
Cui
,
Y. H.
Ding
,
J. L.
Cabellos
,
E.
Osorio
,
R.
Islas
,
A.
Restrepo
, and
G.
Merino
,
Phys. Chem. Chern. Phys.
17
,
8769
(
2015
).
[27]
J. Y.
Guo
,
H. Y.
Chai
,
Q.
Duan
,
J. M.
Qin
,
X. D.
Shen
D. Y.
Jiang
,
J. H.
Hou
,
B.
Yan
,
Z. R.
Li
,
F. L.
Gu
, and
Q. S.
Li
,
Phys. Chem. Chern. Phys.
18
,
4589
(
2016
).
[28]
Y. B.
Wu
,
H. G.
Lu
,
S. D.
Li
, and
Z. X.
Wang
,
J. Phys. Chern. A
113
,
3395
(
2009
).
[29]
Y. B.
Wu
,
Z. X.
Li
,
X. H.
Pu
, and
Z. X.
Wang
,
J. Phys. Chern. C
115
,
13187
(
2011
).
[30]
Y. B.
Wu
,
Z. X.
Li
,
X. H.
Pu
, and
Z. X.
Wang
,
Comput. Theor. Chern.
992
,
78
(
2012
).
[31]
M. H.
Wang
,
M.
Orozco-Ic
,
L.
LeyvarParra
,
W.
Tiznado
,
J.
Barroso
,
Y. H.
Ding
,
Z. H.
Cui
, and
G.
Merino
,
J. Phys. Chern. A
125
,
3009
(
2021
).
[32]
Z. H.
Cui
and
Y. H.
Ding
,
Phys. Chern. Chern. Phys.
13
,
5960
(
2011
).
[33]
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
(
1988
).
[34]
D. Y.
Zubarev
and
A. I.
Boldyrev
,
Phys. Chern. Chern. Phys.
10
,
5207
(
2008
).
[35]
M.
Saunders
,
J. Comput. Chern.
25
,
621
(
2004
).
[36]
P. P.
Bera
,
K. W.
Sattehneyer
,
M.
Saunders
,
H. F.
Schaefer
, and
P. v. R.
Schleyer
,
J. Phys. Chern. A
110
,
4287
(
2006
).
[37]
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
M. V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borčtnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
,
J. Chem. Phys.
152
,
194103
(
2020
).
[38]
H. G.
Lu
and
Y. B.
Wu
, in
GXYZ 2.0, A Random Search Program,
Taiyuan
:
Shanxi University
, (
2015
).
[39]
The AdNDP program was downloaded freely at http://ion.chem.usu.edu/-boldyrev/adndp.php.
[40]
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Koppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
Mcnicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pfluger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
, and
M.
Wang
,
MolPro, a Package of Ab Initio Programs, version 2012.1
, (
2012
).
[41]
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
WilliamsYoung
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
, 0. Kitao,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Jr
,
J. E. P.
Montgomery
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J.C.
Burant
,
S.S.
Iyengar
,
J.
Tomasi
,
M.
Gossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16, Revision B. 01,
Wallingford CT
:
Gaussian Inc
., (
2016
).
[42]
P.
Pyykkö
,
J. Phys. Chem. A
119
,
2326
(
2015
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.