Accurate potential energy surface (PES) calculation is the basis of molecular dynamics research. Using deep learning (DL) methods can improve the speed of PES calculation while achieving competitive accuracy to ab initio methods. However, the performance of DL model is extremely sensitive to the distribution of training data. Without sufficient training data, the DL model suffers from overfitting issues that lead to catastrophic performance degradation on unseen samples. To solve this problem, based on the message passing paradigm of graph neural networks, we innovatively propose an edge-aggregate-attention mechanism, which specifies the weight based on node and edge information. Experiments on MDI7 and QM9 datasets show that our model not only achieves higher PES calculation accuracy but also has better generalization ability compared with Schnet, which demonstrates that edge-aggregate-attention can better capture the inherent features of equilibrium and non-equilibrium molecular conformations.

[1]
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
, A
1133
(
1965
).
[2]
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
[3]
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31,
5262
(
1985
).
[4]
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. B
29
,
6443
(
1984
).
[5]
A. D.
MacKerell
Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiórkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
,
J. Phys. Chem. B
102
,
3586
(
1998
).
[6]
A. C.
Van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
,
J. Phys. Chem. A
105
,
9396
(
2001
).
[7]
B.
Jiang
,
J.
Li
, and
H.
Guo
,
J. Phys. Chem. Lett.
11,
5120
(
2020
).
[8]
Manzhos
and
T.
Carrington
Jr.
,
Chem. Rev.
121,
10187
(
2020
).
[9]
P. L.
Kang
,
C.
Shang
, and
Z. P.
Liu
,
Acc. Chem. Res.
53
,
2119
(
2020
).
[10]
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98,
146401
(
2007
).
[11]
B.
Jiang
and
H.
Guo
,
J. Chem. Phys.
139
,
054112
(
2013
).
[12]
Z.
Xie
and
J.M.
Bowman
,
J. Chem. Theory Comput.
6
,
26
(
2010
).
[13]
R.
Chen
,
K.
Shao
,
B.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
152
,
204307
(
2020
).
[14]
L.
Xiaoxiao
,
C.
Shang
,
L.
Li
,
R.
Chen
,
B.
Fu
,
X.
Xu
, and
D.
Zhang
,
Nat. Commun.
13
,
4427
(
2022
).
[15]
J.
Han
,
L.
Zhang
,
R.
Car
, and
E.
Weinan
,
Commun. Comput. Phys.
23
,
629
(
2018
).
[16]
Y.
Zhang
,
C.
Hu
, and
B.
Jiang
,
J. Phys. Chem. Lett.
10
,
4962
(
2019
).
[17]
S.
Foiles
,
M.
Baskes
, and
M. S.
Daw
,
Phys. Rev. B
33
,
7983
(
1986
).
[18]
V.
Zaverkin
and
J.
Kästner
,
J. Chem. Theory Comput.
16
,
5410
(
2020
).
[19]
H.
Maron
,
H.
Ben-Ramu
,
H.
Serviansky
, and
Y.
Lipman
, in
Advances in Neural Information Processing Systems 32,
Vancouver, BC, Canada
, (
2019
).
[20]
K.
Liu
,
X.
Sun
,
L.
Jia
,
J.
Ma
,
H.
Xing
,
J.
Wu
,
H.
Gao
,
Y.
Sun
,
F.
Boulnois
, and
J.
Fan
,
Int. J. Mol. Sci.
20
,
3389
, (
2019
).
[21]
W.
Jin
,
R.
Barzilay
, and
T.
Jaakkola
,
International Conference on Machine Learning, PMLR
,
2323
2332
(
2018
)
[22]
T.
Nguyen
,
H.
Le
,
T. P.
Quinn
,
T.
Nguyen
,
T. D.
Le
, and
S.
Venkatesh
,
Bioinformatics
37
,
1140
(
2021
)
[23]
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K. R.
Müller
, and
A.
Tkatchenko
,
Nat. Commun.
8
,
1
(
2017
).
[24]
W.
Jin
,
R.
Barzilay
, and
T.
Jaakkola
, in
Proceedings of the 35th International Conference on Machine Learning,
Long Beach, California, USA
, (
2018
).
[25]
K.
Schütt
,
O.
Unke
, and
M.
Gastegger
,
Internation Conference on Machine Learning, PMLR
,
9377
9388
(
2021
).
[26]
Y.
Zhang
,
J.
Xia
, and
B.
Jiang
,
J. Chem. Phys.
156,
114801
(
2022
).
[27]
O. T.
Unke
,
S.
Chmiela
,
M.
Gastegger
,
K. T.
Schütt
,
H. E.
Sauceda
, and
K. R.
Müller
,
Nat. Commun.
12
,
1
(
2021
).
[28]
P.
Veličković
,
G.
Cucurull
,
A.
Casanova
,
A.
Romero
,
P.
Liò
, and
Y.
Bengio
,
International Conference on Learning Representations,
(
2018
).
[29]
Z.
Xiong
,
D.
Wang
,
X.
Liu
,
F.
Zhong
,
X.
Wan
,
X.
Li
,
Z.
Li
,
X.
Luo
,
K.
Chen
,
H.
Jiang
, and
M.
Zheng
,
J. Med. Chem.
63
,
8749
(
2020
).
[30]
C. W.
Coley
,
W.
Jin
,
L.
Rogers
,
T. F.
Jamison
,
T. S.
Jaakkola
,
W. H.
Green
,
R.
Barzilay
, and
K. F.
Jensen
,
Chem. Sci.
10
,
370
(
2019
).
[31]
A. Y. T.
Wang
,
S. K.
Kauwe
,
R. J.
Murdock
, and
T. D.
Sparks
,
Npj Comput. Mater.
7
,
1
(
2021
).
[32]
S. Y.
Louis
,
Y.
Zhao
,
A.
Nasiri
,
X.
Wang
,
Y.
Song
,
F.
Liu
, and
J.
Hu
,
Phys. Chem. Chem. Phys.
22
,
18141
(
2020
).
[33]
K.
Schütt
,
P. J.
Kindermans
,
H. E. Sauceda
Felix
,
S.
Chmiela
,
A.
Tkatchenko
, and
K. R.
Müller
, in
Advances in Neural Information Processing Systems 30,
Long Beach, CA, USA
((
2017
)).
[34]
K. T.
Schütt
,
H. E.
Sauceda
,
P. J.
Kindermans
,
A.
Tkatchenko
, and
K. R.
Müller
,
J. Chem. Phys.
148
,
241722
(
2018
).
[35]
D. P.
Kingma
and
J.
Ba
, in
3rd International Conference on Learning Representations,
San Diego, CA, USA
, (
2015
).
[36]
I.
Loshchilov
and
F.
Hutter
, in
5th International Conference on Learning Representations
,
Toulon, France
, (
2017
).
[37]
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K. R.
Müller
,
Sci Adv
3
,
e1603015
(
2017
).
[38]
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
Von Lilienfeld
,
Sci. Data
1
,
1
(
2014
).
[39]
L.
Ruddigkeit
,
R.
Van Deursen
,
L. C.
Blum
, and
J. L.
Reymond
,
J. Chem. Inf. Model.
52
,
2864
(
2012
).
[40]
O. T.
Unke
and
M.
Meuwly
,
J. Chem. Theory Comput.
15
,
3678
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.