Colloidal quantum dot (CQD) lasers show promising applications in flexible optoelectronic devices, due to their tunable emission wavelength, narrow spectrum bandwidth and high power intensity. However, fabricating a flexible CQD laser is challenging because of the difficulties in fabricating optical cavities on flexible substrates using traditional microfabrication technologies. Herein, we propose a one-step self-assembly approach to fabricate flexible CQD supraparticle lasers. The whole assembly approach is processed in a liquid environment without surfactants, and the formed spherical CQD supraparticles are featured with smooth surfaces, serving as high-quality-factor whispering-gallery mode cavities to support laser oscillation. A low lasing threshold of 54 µJ/cm2 is observed while exciting a CQD supraparticle with pulsed femtosecond lasers. The calculated cavity quality factor of 963 for CQD supraparticle lasers is twofold larger than that of CQD lasers assembled with surfactants. Moreover, the CQD supraparticles can serve as free-standing lasers, which allows them to be deposited on flexible substrates such as paper and cloth. Furthermore, our CQD lasers show high stability, after being continuously photoexcited above the threshold for 400 min, their lasing intensity remains at 85.7% of the initial value. As bright, free-standing and long-term stable light sources, the assembled CQD lasers proposed in this work show potential applications in wearable devices and medical diagnosis.

[1]
D. V.
Talapin
,
A. L.
Rogach
,
A.
Kornowski
,
M.
Haase
, and
H.
Weller
,
Nano Lett.
1
,
207
(
2001
).
[2]
D. A.
Hanifi
,
N. D.
Bronstein
,
B. A.
Koscher
,
Z.
Nett
,
J. K.
Swabeck
,
K.
Takano
,
A. M.
Schwartzberg
,
L.
Maserati
,
K.
Vandewal
,
Y.
van de Burgt
,
A.
Salleo
, and
A. P.
Alivisatos
,
Science
363
,
1199
(
2019
).
[4]
C. B.
Murray
,
D. J.
Norris
, and
M. G.
Bawendi
,
J. Am. Chem. Soc.
115
,
8706
(
1993
).
[5]
H.
Zhang
,
Y.
Yang
, and
X.
Liu
,
Chin. J. Chem. Phys.
31
,
197
(
2018
).
[6]
M. A.
Hines
and
P.
Guyot-Sionnest
,
J. Phys. Chem.
100
,
468
(
1996
).
[7]
H.
Shen
,
Q.
Gao
,
Y.
Zhang
,
Y.
Lin
,
Q.
Lin
,
Z.
Li
,
L.
Chen
,
Z.
Zeng
,
X.
Li
,
Y.
Jia
,
S.
Wang
,
Z.
Du
,
L. S.
Li
, and
Z.
Zhang
,
Nature Photon.
13
,
192
(
2019
).
[8]
M.
Han
,
X.
Gao
,
J. Z.
Su
, and
S.
Nie
,
Nat. Biotechnol.
19
,
631
(
2001
).
[9]
W.
Chen
,
X.
Lu
,
F.
Fan
, and
J.
Du
,
Nano Lett.
21,
7732
(
2021
).
[10]
Y. S.
Park
,
J.
Roh
,
B. T.
Diroll
,
R. D.
Schaller
, and
V. I.
Klimov
,
Nat. Rev. Mater.
6
,
382
(
2021
).
[11]
F.
Fan
,
O.
Voznyy
,
R. P.
Sabatini
,
K. T.
Bicanic
,
M. M.
Adachi
,
J. R.
McBride
,
K. R.
Reid
,
Y. S.
Park
,
X.
Li
,
A.
Jain
,
R.
Quintero-Bermudez
,
M.
Saravanapavanantham
,
M.
Liu
,
M.
Korkusinski
,
P.
Hawrylak
,
V. I.
Klimov
,
S. J.
Rosenthal
,
S.
Hoogland
, and
E. H.
Sargent
,
Nature
544
,
75
(
2017
).
[12]
B.
Tang
,
G.
Li
,
X.
Ru
,
Y.
Gao
,
Z.
Li
,
H.
Shen
,
H.
Yao
,
F.
Fan
, and
J.
Du
,
Nano Lett.
22
,
658
(
2022
).
[13]
C.
Dang
,
J.
Lee
,
C.
Breen
,
J. S.
Steckel
,
S.
Coe-Sullivan
, and
A.
Nurmikko
,
Nat. Nanotechnol.
7,
335
(
2012
).
[14]
V. I.
Klimov
,
A. A.
Mikhailovsky
,
S.
Xu
,
A.
Malko
,
J. A.
Hollingsworth
,
C. A.
Leatherdale
,
H. J.
Eisler
, and
M. G.
Bawendi
,
Science
290
,
314
(
2000
).
[15]
J.
Zhao
,
Y.
Yan
,
Z.
Gao
,
Y.
Du
,
H.
Dong
,
J.
Yao
, and
Y. S.
Zhao
,
Nat. Commun.
10
,
870
(
2019
).
[16]
S.
Komura
,
K.
Okuda
,
K.
Onoda
, and
H.
Kijima
,
J. Soc. Inf. Disp.
29
,
17
(
2021
).
[17]
F.
Schütt
,
M.
Zapf
,
S.
Signetti
,
J.
Strobel
,
H.
Krüger
,
R.
Röder
,
J.
Carstensen
,
N.
Wolff
,
J.
Marx
,
T.
Carey
,
M.
Schweichel
,
M.-I.
Terasa
,
L.
Siebert
,
H. K.
Hong
,
S.
Kaps
,
B.
Fiedler
,
Y. K.
Mishra
,
Z.
Lee
,
N. M.
Pugno
,
L.
Kienle
,
A. C.
Ferrari
,
F.
Torrisi
,
C.
Ronning
, and
R.
Adelung
,
Nat. Commun.
11
,
1437
(
2020
).
[18]
M.
Karl
,
J. M. E.
Glackin
,
M.
Schubert
,
N. M.
Kronenberg
,
G. A.
Turnbull
,
I. D. W.
Samuel
, and
M. C.
Gather
,
Nat. Commun.
9
,
1525
(
2018
).
[19]
M. K.
Choi
,
J.
Yang
,
T.
Hyeon
, and
D. H.
Kim
,
Npj Flex. Electron.
2
,
1
(
2018
).
[20]
N. M.
Idris
,
M. K.
Gnanasammandhan
,
J.
Zhang
,
P. C.
Ho
,
R.
Mahendran
, and
Y.
Zhang
,
Nat. Med.
18,
1580
(
2012
).
[21]
X.
Wu
,
Y.
Zhang
,
K.
Takle
,
O.
Bilsel
,
Z.
Li
,
H.
Lee
,
Z.
Zhang
,
D.
Li
,
W.
Fan
,
C.
Duan
,
E. M.
Chan
,
C.
Lois
,
Y.
Xiang
, and
G.
Han
,
ACS Nano
10
,
1060
(
2016
).
[22]
Y.
Niu
,
J.
Li
,
J.
Gao
,
X.
Ouyang
,
L.
Cai
, and
Q.
Xu
,
Nano Res.
14
,
3820
(
2021
).
[23]
Y. C.
Chen
and
X.
Fan
,
Adv. Opt. Mater.
7
,
1900377
(
2019
).
[24]
S. C.
Glotzer
and
M. J.
Solomon
,
Nat. Mater.
6
,
557
(
2007
).
[25]
J.
Wang
,
J.
Schwenger
,
A.
Ströbel
,
P.
Feldner
,
P.
Herre
,
S.
Romeis
,
W.
Peukert
,
B.
Merle
, and
N.
Vogel
,
Sci. Adv.
7
,
eabj0954
(
2021
).
[26]
F.
Montanarella
,
D.
Urbonas
,
L.
Chadwick
,
P. G.
Moerman
,
P. J.
Baesjou
,
R. F.
Mahrt
,
A.
van Blaaderen
,
T.
Stöferle
, and
D.
Vanmaekelbergh
,
ACS Nano
12,
12788
(
2018
).
[27]
Y.
Song
,
R.
Liu
,
Z.
Wang
,
H.
Xu
,
Y.
Ma
,
F.
Fan
,
O.
Voznyy
, and
J.
Du
,
Sci. Adv.
8
,
eabl8219
(
2022
).
[28]
S.
Christodoulou
,
G.
Vaccaro
,
V.
Pinchetti
,
F. D.
Donato
,
J. Q.
Grim
,
A.
Casu
,
A.
Genovese
,
G.
Vicidomini
,
A.
Diaspro
,
S.
Brovelli
,
L.
Manna
, and
I.
Moreels
,
J. Mater. Chem. C
2
,
3439
(
2014
).
[29]
S.
Guttman
,
Z.
Sapir
,
M.
Schultz
,
A. V.
Butenko
,
B. M.
Ocko
,
M.
Deutsch
, and
E.
Sloutskin
,
Proc. Natl. Acad. Sci. USA
113
,
493
(
2016
).
[30]
S. X.
Qian
,
J. B.
Snow
,
H. M.
Tzeng
, and
R. K.
Chang
,
Science
231
,
486
(
1986
).
[31]
J.
Wang
,
G.
Liang
, and
K.
Wu
,
Chin. J. Chem. Phys.
30
,
649
(
2017
).
[32]
V. I.
Klimov
,
A. A.
Mikhailovsky
,
D. W.
McBranch
,
C. A.
Leatherdale
, and
M. G.
Bawendi
,
Science
287,
1011
(
2000
).
[33]
M.
Cadelano
,
V.
Sarritzu
,
N.
Sestu
,
D.
Marongiu
,
F.
Chen
,
R.
Piras
,
R.
Carpino
,
C. M.
Carbonaro
,
F.
Quochi
,
M.
Saba
,
A.
Mura
, and
G.
Bongiovanni
,
Adv. Opt. Mater.
3
,
1557
(
2015
).
[34]
Q.
Hu
,
L.
Zhao
,
J.
Wu
,
K.
Gao
,
D.
Luo
,
Y.
Jiang
,
Z.
Zhang
,
C.
Zhu
,
E.
Schaible
,
A.
Hexemer
,
C.
Wang
,
Y.
Liu
,
W.
Zhang
,
M.
Grätzel
,
F.
Liu
,
T. P.
Russell
,
R.
Zhu
, and
Q.
Gong
,
Nat. Commun.
8
,
15688
(
2017
).
[35]
Y.
Li
,
X.
Wang
,
W.
Xue
,
W.
Wang
,
W.
Zhu
, and
L.
Zhao
,
Nano Res.
12
,
785
(
2019
).
[36]
P. T.
Snee
,
Y.
Chan
,
D. G.
Nocera
, and
M. G.
Bawendi
,
Adv. Mater.
17
,
1131
(
2005
).
[37]
H.
Chang
,
Y.
Zhong
,
H.
Dong
,
Z.
Wang
,
W.
Xie
,
A.
Pan
, and
L.
Zhang
,
Light Sci. Appl.
10
,
60
(
2021
).
[38]
Y.
Wang
,
X.
Li
,
J.
Song
,
L.
Xiao
,
H.
Zeng
, and
H.
Sun
,
Adv. Mater.
27
,
7101
(
2015
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.