Lithium has been paid great attention in recent years thanks to its significant applications for battery and lightweight alloy. Developing a potential model with high accuracy and efficiency is important for theoretical simulation of lithium materials. Here, we build a deep learning potential (DP) for elemental lithium based on a concurrent-learning scheme and DP representation of the density-functional theory (DFT) potential energy surface (PES), the DP model enables material simulations with close-to DFT accuracy but at much lower computational cost. The simulations show that basic parameters, equation of states, elasticity, defects and surface are consistent with the first principles results. More notably, the liquid radial distribution function based on our DP model is found to match well with experiment data. Our results demonstrate that the developed DP model can be used for the simulation of lithium materials.

[1]
N. E.
Prasad
,
A.
Gokhale
, and
P. R.
Rao
,
Sadhana
28
,
209
(
2003
).
[2]
N. E.
Prasad
,
A.
Gokhale
, and
R.
Wanhill
,
Aluminumlithium Alloys: Processing, Properties, and Applications,
Butterworth-Heinemann
, (
2013
).
[3]
T. C.
Chang
,
J. Y.
Wang
,
C. L.
Chu
, and
S.
Lee
,
Mater. Lett.
60
,
3272
(
2006
).
[4]
N.
Nitta
,
F.
Wu
,
J. T.
Lee
, and
G.
Yushin
,
Biochem. Pharmacol.
18
,
252
(
2015
).
[5]
V.
Santoro
,
D. D.
DiJulio
, and
P. M.
Bentley
,
J. Phys.: Conf. Ser. 746
,
012012
(
2016
).
[6]
Y. C.
Wang
,
J.
Lv
, and
Y. M.
Ma
,
Comput. Phys. Commun.
183
,
2063
(
2012
).
[7]
J.
Lv
,
Y.
Wang
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. Lett.
106
,
19
(
2011
).
[8]
S. A.
Mack
,
S. M.
Griffin
, and
J. B.
Neaton
,
Proc. Natl. Acad. Sci. USA
116
,
9197
(
2019
).
[9]
K.
Shimizu
,
H.
Ishikawa
,
D.
Takao
,
T.
Yagi
, and
K.
Amaya
,
Nature
419
,
597
(
2002
).
[10]
V. V.
Struzhkin
,
M. I.
Eremets
,
W.
Gan
,
H. K.
Mao
, and
R. J.
Hemley
,
Science
298
,
1213
(
2002
).
[11]
T.
Matsuoka
and
K.
Shimizu
,
Nature
458
,
186
(
2009
).
[12]
C. L.
Guillaume
,
E.
Gregoryanz
,
O.
Degtyareva
,
M. I.
McMahon
,
M.
Hanfland
,
S.
Evans
,
M.
Guthrie
,
S. V.
Sinogeikin
, and
H.
Mao
,
Nat. Phys.
7
,
211
(
2011
).
[13]
G. J.
Ackland
,
M.
Dunuwille
,
M.
Martinez-Canales
,
I.
Loa
,
R.
Zhang
,
S.
Sinogeikin
,
W.
Cai
, and
S.
Deemyad
,
Science
356
,
1254
(
2017
).
[14]
A. M. J.
Schaeffer
,
W. B.
Talmadge
,
S. R.
Temple
, and
S.
Deemyad
,
Phys. Rev. Lett.
109
,
185702
(
2012
).
[15]
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
[16]
S.
Elatresh
,
S.
Bonev
,
E.
Gregoryanz
, and
N.
Ashcroft
,
Phys. Rev. B
94
,
104107
(
2016
).
[17]
E. R.
Hernández
,
A.
Rodriguez-Prieto
,
A.
Bergara
, and
D.
Alfe
,
Phys. Rev. Lett.
104
,
185701
(
2010
).
[18]
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
[19]
J. E.
Jones
,
Proc. Math. Phys. Eng. Sci.
106
,
463
(
1924
).
[20]
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
[21]
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. B
29
,
6443
(
1984
).
[22]
[23]
J. R.
Vella
,
F. H.
Stillinger
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
J. Phys. Chem. B
119
,
8960
(
2015
).
[24]
Z.
Cui
,
F.
Gao
,
Z.
Cui
, and
J.
Qu
,
Model. Simul. Mat. Sci. Eng.
20
,
015014
(
2011
).
[25]
A.
Nichol
and
G. J.
Ackland
,
Phys. Rev. B
93
,
1
(
2016
).
[26]
W. S
Ko
and
J.
Bae
,
Comput. Mater. Sci.
129
,
202
(
2017
).
[27]
J.
Dorrell
and
L. B.
Pártay
,
J. Phys. Chem. B
124
,
6015
(
2020
).
[28]
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and W. E,
Phys. Rev. Lett.
120
,
143001
(
2018
).
[29]
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
[30]
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
[31]
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
,
J. Comput. Phys.
285
,
316
(
2015
).
[32]
A. V.
Shapeev
,
Multiscale Model. Simul.
14
,
1153
(
2016
).
[33]
M. F. C.
Andrade
,
H.
Ko
,
L.
Zhang
,
R.
Car
, and
A.
Selloni
,
Chem. Sci.
11
,
2335
(
2020
).
[34]
L.
Zhang
,
D. Y.
Lin
,
H.
Wang
,
R.
Car
, and W. E,
Phys. Rev. Mater.
3
,
023804
(
2019
).
[35]
J.
Zeng
,
L.
Cao
,
M.
Xu
,
T.
Zhu
, and
J. Z.
Zhang
,
Nat. Commun.
11
,
1
(
2020
).
[36]
H.
Wang
,
Y.
Zhang
,
L.
Zhang
, and
H.
Wang
,
Front. Chem.
8
,
589795
(
2020
).
[37]
X.
Wang
,
H.
Wang
,
Q.
Luo
, and
J.
Yang
,
J. Chem. Phys.
157
,
074304
(
2022
).
[38]
[39]
[40]
H.
Wang
,
L.
Zhang
,
J.
Han
, and W. E,
Comput. Phys. Commun.
228
,
178
(
2018
).
[41]
L.
Zhang
,
J.
Han
,
H.
Wang
,
W.
Saidi
,
R.
Car
, and W. E,
NIPS’18
4441
(
2018
).
[42]
Y.
Zhang
,
H.
Wang
,
W.
Chen
,
J.
Zeng
,
L.
Zhang
,
H.
Wang
, and W. E,
Comput. Phys. Commun.
253
,
107206
(
2020
).
[44]
[45]
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
[46]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
[47]
J. D.
Pack
and
H. J.
Monkhorst
,
Phys. Rev. B
16
,
1748
(
1977
).
[48]
D. P.
Kingma
and
J.
Ba
, in
3rd International Conference on Learning Representations,
San Diego, CA, USA
,
May 7-9, 2015
;
Conference Track Proceedings
,
Y.
Bengio
and
Y.
LeCun
Eds., (
2015
).
[49]
M.
De Jong
,
W.
Chen
,
T.
Angsten
,
A.
Jain
,
R.
Notestine
,
A.
Gamst
,
M.
Sluiter
,
C. K.
Ande
,
S.
Van Der Zwaag
,
J. J.
Plata
,
C.
Toher
,
S.
Curtarolo
,
G.
Ceder
,
K. A.
Persson
, and
M.
Asta
,
Sci. Data
2
,
1
(
2015
).
[50]
S. P.
Ong
,
W. D.
Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
,
Comput. Mater. Sci.
68
,
314
(
2013
).
[51]
D.
Marx
and
M.
Parrinello
,
J. Chem. Phys.
104
,
4077
(
1996
).
[52]
P. S.
Salmon
,
I.
Petri
,
P. H.
De Jong
,
P.
Verkerk
,
H. E.
Fischer
, and
W. S.
Howells
,
J. Phys.: Condens. Matter
16
,
195
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.