Zero-dimensional environmentally friendly carbon quantum dots (CQDs) combined with two-dimensional materials have a wide range of applications in optoelectronic devices. We combined steady-state and transient absorption spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide (MoS2). Transient absorption plots showed photoinduced absorption and stimulated emission features, which involved the intrinsic and defect states of CQDs. Adding MoS2 to CQDs solution, the lowest unoccupied molecular orbital of CQDs transferred energy to MoS2, which quenched the intrinsic emission at 390 nm. With addition of MoS2, CQD-MoS2 composites quenched defect emission at 490 nm and upward absorption, which originated from another energy transfer from the defect state. Two energy transfer paths between CQDs and MoS2 were efficiently manipulated by changing the concentration of MoS2, which laid a foundation for improving device performance.

[1]
R.
Xu
,
B.
Huang
,
T.
Wang
,
Y.
Yuan
,
L.
Zhang
,
C.
Lu
,
Y.
Cui
, and
J.
Zhang
,
Superlattices Microstruct.
111
,
665
(
2017
).
[2]
F. P. Garcia
de Arquer
,
D. V.
Talapin
,
V. I.
Klimov
,
Y.
Arakawa
,
M.
Bayer
, and
E. H.
Sargent
,
Science
373
,
8541
(
2021
).
[3]
N.
Nekić
,
J.
Sancho-Parramon
,
I.
Bogdanović-Radović
,
J.
Grenzer
,
R.
Hübner
,
S.
Bernstorff
,
M.
Ivanda
, and
M.
Buljan
,
Nanophotonics
6
,
1055
(
2017
).
[4]
S.
Armaković
and
S. J.
Armaković
,
J. Phys. Chem. Solids
98
,
156
(
2016
).
[5]
Y.
Wu
,
C.
Ma
,
Y.
Chen
,
B.
Mortazavi
,
Z.
Lu
,
X.
Zhang
,
K.
Xu
,
H.
Zhang
,
W.
Liu
,
T.
Rabczuk
,
H.
Zhu
,
Z.
Fang
, and
R.
Zhang
,
Mater. Today Phys.
12
,
100164
(
2020
).
[6]
M.
Ye
,
D.
Winslow
,
D.
Zhang
,
R.
Pandey
, and
Y.
Yap
,
ACS Photonics
2
,
288
(
2015
).
[7]
D.
Ke
,
L. Z.
Sui
,
D. L.
Liu
,
J. Q.
Cui
,
Y. F.
Zhang
,
Q. Y.
Li
,
S. Y.
Li
,
Y. F.
Jiang
,
A. M.
Chen
,
J. L.
Song
, and
M. X.
Jin
,
Chin. J. Chem. Phys.
31
,
277
(
2018
).
[8]
B. V.
Senkovskiy
,
M.
Pfeiffer
,
S. K.
Alavi
,
A.
Bliesener
,
J.
Zhu
,
S.
Michel
,
A. V.
Fedorov
,
R.
German
,
D.
Hertel
,
D.
Haberer
,
L.
Petaccia
,
F. R.
Fischer
,
K.
Meerholz
,
P. H. M.
van Loosdrecht
,
K.
Lindfors
, and
A.
Gruneis
,
Nano Lett.
17
,
4029
(
2017
).
[9]
B.
Ullrich
,
H.
Xi
, and
J. S.
Wang
,
Appl. Phys. Lett.
108
,
083110
(
2016
).
[10]
I. Y.
Goryacheva
,
A. V.
Sapelkin
, and
G. B.
Sukhorukov
,
Trends Anal. Chem.
90
,
27
(
2017
).
[12]
V. A.
Öberg
,
X.
Zhang
,
M. B.
Johansson
, and
E. M. J.
Johansson
,
ChemNanoMat
4
,
1223
(
2018
).
[13]
Y.
Yang
,
D.
Li
,
C.
Li
,
Y.
Liu
, and
K.
Jiang
,
J. Hazard. Mater.
341
,
93
(
2018
).
[14]
L.
Yuan
,
T.
Wang
,
T.
Zhu
,
M.
Zhou
, and
L.
Huang
,
J. Phys. Chem. Lett.
8
,
3371
(
2017
).
[15]
C. Y.
Han
,
H. S.
Kim
, and
H.
Yang
,
Materials
13
,
897
(
2020
).
[16]
H.
Wu
,
Z.
Kang
,
Z.
Zhang
,
Z.
Zhang
,
H.
Si
,
Q.
Liao
,
S.
Zhang
,
J.
Wu
,
X.
Zhang
, and
Y.
Zhang
,
Adv. Funct. Mater.
28
,
1802015
(
2018
).
[17]
F. I.
Alzakia
and
S. C.
Tan
,
Adv. Sci.
8
,
2003864
(
2021
).
[18]
Y.
Huang
,
H.
Zang
,
J. S.
Chen
,
E. A.
Sutter
,
P. W.
Sutter
,
C. Y.
Nam
, and
M.
Cotlet
,
Appl. Phys. Lett.
108
,
123502
(
2016
).
[19]
T.
Bai
,
B.
Yang
,
J.
Chen
,
D.
Zheng
,
Z.
Tang
,
X.
Wang
,
Y.
Zhao
,
R.
Lu
, and
K.
Han
,
Adv. Mater.
33
,
2007215
(
2021
).
[20]
B.
Yang
,
F.
Zhang
,
J.
Chen
,
S.
Yang
,
X.
Xia
,
T.
Pullerits
,
W.
Deng
, and
K.
Han
,
Adv. Mater.
29
,
1703758
(
2017
).
[21]
I.
Vasilescu
,
S. A. V.
Eremia
,
M.
Kusko
,
A.
Radoi
,
E.
Vasile
, and
G. L.
Radu
,
Biosens. Bioelectron.
15
,
30337
(
2016
).
[22]
S. Mansouri
Majd
,
F.
Ghasemi
,
A.
Salimi
, and
T. K.
Sham
,
ACS Appl. Electron. Mater.
2
,
635
(
2020
).
[23]
Z.
Li
,
R.
Ye
,
R.
Feng
,
Y.
Kang
,
X.
Zhu
,
J. M.
Tour
, and
Z.
Fang
,
Adv. Mater.
27
,
5235
(
2015
).
[24]
J.
Shi
,
J.
Lyu
,
F.
Tian
, and
M.
Yang
,
Biosens. Bioelectron.
93
,
182
(
2017
).
[25]
D.
Prasai
,
A. R.
Klots
,
A. K.
Newaz
,
J. S.
Niezgoda
,
N. J.
Orfield
,
C. A.
Escobar
,
A.
Wynn
,
A.
Efimov
,
G. K.
Jennings
,
S. J.
Rosenthal
, and
K. I.
Bolotin
,
Nano Lett.
15
,
4374
(
2015
).
[26]
Wang
,
X.
Niu
,
H.
Qian
,
L.
Guan
,
M.
Zhao
,
X.
Ding
,
S.
Zhang
,
Y.
Wang
, and
J.
Sha
,
Nanotechnology
27
,
505204
(
2016
).
[27]
R.
Wu
,
X.
Guo
,
J.
Luo
, and
X.
Miao
,
J. Lumin.
227
,
117602
(
2020
).
[28]
R.
Wu
,
X.
Guo
,
J.
Luo
,
X.
Miao
, and
J.
Zhang
,
J. Phys. Chem. C
124
,
25038
(
2020
).
[29]
R.
Wu
,
X.
Wang
,
J.
Luo
,
X.
Liu
,
B.
Li
,
S.
Wang
,
L. Y.
Cheng
, and
X.
Miao
,
J. Phys. Chem. C
126
,
1558
(
2022
).
[30]
R.
Das
,
R.
Bandyopadhyay
, and
P.
Pramanik
,
Mater. Today Chem.
8
,
96
(
2018
).
[31]
A. S.
Rasal
,
S.
Yadav
,
A.
Yadav
,
A. A.
Kashale
,
S. T.
Manjunatha
,
A.
Altaee
, and
J. Y.
Chang
,
ACS Appl. Nano Mater.
4
,
6515
(
2021
).
[32]
H.
Gao
,
Q.
Xu
,
J.
Wang
,
C.
Ning
,
Y.
Liu
,
Y.
Xie
, and
R.
Lu
,
J. Phys. Chem. Lett.
13
,
258
(
2022
).
[33]
K.
Wei
,
L.
Zhang
,
S. L.
Jiang
, and
Q.
Zhang
,
Chin. J. Chem. Phys.
32
,
643
(
2019
).
[34]
R.
Wu
,
R.
Chen
,
H.
Zhou
,
Y.
Qin
,
G.
Zhang
,
C.
Qin
,
Y.
Gao
,
Y.
Gao
,
L.
Xiao
, and
S.
Jia
,
Appl. Phys. Lett.
112
,
053101
(
2018
).
[35]
X.
Yuan
,
J.
Zheng
,
R.
Zeng
,
P.
Jing
,
W.
Ji
,
J.
Zhao
,
W.
Yang
, and
H.
Li
,
Nanoscale
6
,
300
(
2014
).
[36]
C.
Ruckebusch
,
M.
Sliwa
,
P.
Pernot
,
A.
de Juan
, and
R.
Tauler
,
J. Photochem. Photobiol. C
13
,
1
(
2012
).
[37]
Q.
Fang
,
Y.
Dong
,
Y.
Chen
,
C. H.
Lu
,
Y.
Chi
,
H. H.
Yang
, and
T.
Yu
,
Carbon
118
,
319
(
2017
).
[38]
W.
He
,
C.
Qin
,
Z.
Qiao
,
G.
Zhang
,
L.
Xiao
, and
S.
Jia
,
Carbon
109
,
264
(
2016
).
[39]
L.
Zhang
,
J.
Liu
,
H.
Jiang
,
H.
Gu
, and
S.
Liu
,
Chin. Opt. Lett.
20
,
100002
(
2022
).
[40]
R.
Wu
,
J.
Luo
,
X.
Guo
,
X.
Wang
,
Z.
Ma
,
B.
Li
,
L. Y.
Cheng
, and
X.
Miao
,
Chem. Phys. Lett.
781
,
138960
(
2021
).
[41]
W.
Guo
,
S.
Xu
,
Z.
Wu
,
N.
Wang
,
M. M. T.
Loy
, and
S.
Du
,
Small
9
,
3031
(
2013
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.