The characterization of the structures of molecular clusters, which serve as building blocks for bulk substances, provides crucial insight into the interactions between constituent units. Chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy, combined with state-of-the-art quantum chemical calculations, is a powerful tool for characterizing the structures of molecular clusters, as the rotational spectra are directly related to the mass distribution of a molecule or cluster. However, determining the structures of large or complex clusters from experimental rotational spectra remains challenging due to their structural flexibility. Ab initio and density functional theory calculations for searching their stable structures could be significantly time-consuming and method-dependent. To address these challenges, we have developed an approach that relies on the experimental rotational constants to search for potential molecular structures without quantum chemical optimization. Our approach involves creating an initial set of conformers through either a semi-empirical sampling program or the quasi-Monte Carlo method. After-ward, the trust region reflective algorithm is utilized for structure fitting. This procedure enables us to quickly generate potential conformers and gain access to precise structural information. We apply our fitting program to water hexamer and benzaldehyde-water clusters, and the resulting topological structures align extremely well with the experimental results.

[1]
A. W.
Castleman
and
P.
Jena
,
Proc. Natl. Acad. Sci.
103
,
10554
(
2006
).
[3]
S.
Heiles
and
R. L.
Johnston
,
Int. J. Quantum Chem.
113
,
2091
(
2013
).
[4]
S. R.
Gadre
,
S. D.
Yeole
, and
N.
Sahu
,
Chem. Rev.
114
,
12132
(
2014
).
[5]
J.
Zhang
and
V. A.
Glezakou
,
Int. J. Quantum Chem.
121
,
e26553
(
2021
).
[6]
C.
Pérez
,
S.
Lobsiger
,
N. A.
Seifert
,
D. P.
Zaleski
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
, and
B. H.
Pate
,
Chem. Phys. Lett.
571
,
1
(
2013
).
[7]
C.
Perez
,
M. T.
Muckle
,
D. P.
Zaleski
,
N. A.
Seifert
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
, and
B. H.
Pate
,
Science
336
,
897
(
2012
).
[8]
C.
Pérez
,
D. P.
Zaleski
,
N. A.
Seifert
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
, and
B. H.
Pate
,
Angew. Chem. Int.
Ed.
53
,
14368
(
2014
).
[9]
T. J.
Balle
and
W. H.
Flygare
,
Rev. Sci. Instrum.
52
,
33
(
1981
).
[10]
G. B.
Park
and
R. W.
Field
,
J. Chem. Phys.
144
,
200901
(
2016
).
[11]
S. R.
Domingos
,
C.
Perez
, and
M.
Schnell
,
Annu. Rev. Phys. Chem.
69
,
499
(
2018
).
[12]
W.
Caminati
and
J. U.
Grabow
,
Frontiers and Advances in Molecular Spectroscopy
,
1st Edn
.,
Elsevier Science
,
569
(
2018
).
[13]
B. H.
Pate
,
L.
Evangelisti
,
W.
Caminati
,
Y.
Xu
,
J.
Thomas
,
D.
Patterson
,
C.
Perez
, and
M.
Schnell
,
Chiral Analysis
,
2nd Edn
.,
Elsevier Science
,
679
(
2018
).
[14]
K.
Suma
,
Y.
Sumiyoshi
, and
Y.
Endo
,
Science
308
,
1885
(
2005
).
[15]
K.
Suma
,
Y.
Sumiyoshi
, and
Y.
Endo
,
Science
311
,
1278
(
2006
).
[16]
K. L. K.
Lee
and
M. C.
McCarthy
,
J. Phys. Chem. Lett.
10
,
2408
(
2019
).
[17]
M. C.
McCarthy
,
K. L. K.
Lee
,
P. B.
Carroll
,
J. P.
Porterfield
,
P. B.
Changala
,
J. H.
Thorpe
, and
J. F.
Stanton
,
J. Phys. Chem. A
124
,
5170
(
2020
).
[18]
A.
Lesarri
,
S.
Mata
,
J. C.
López
, and
J. L.
Alonso
,
Rev. Sci. Instrum.
74
,
4799
(
2003
).
[19]
K. L. K.
Lee
,
S.
Thorwirth
,
M. A.
Martin-Drumel
, and
M. C.
McCarthy
,
Phys. Chem. Chem. Phys.
21
,
18911
(
2019
).
[20]
E. R.
Alonso
,
M.
Fuse
,
I.
Leon
,
C.
Puzzarini
,
J. L.
Alonso
, and
V.
Barone
,
J. Phys. Chem. A
125
,
2121
(
2021
).
[21]
M.
Hassouna
,
A.
Walters
,
C.
Demuynck
, and
M.
Bogey
,
J. Mol. Spectrosc.
200
,
16
(
2000
).
[22]
N.
Hansen
,
H.
Mäder
, and
F.
Temps
,
J. Mol. Spectrosc.
209
,
278
(
2001
).
[23]
B. C.
Dian
,
G. G.
Brown
,
K. O.
Douglass
, and
B. H.
Pate
,
Science
320
,
924
(
2008
).
[24]
K.
Prozument
,
J. H.
Baraban
,
P. B.
Changala
,
G. B.
Park
,
R. G.
Shaver
,
J. S.
Muenter
,
S. J.
Klippenstein
,
V. Y.
Chernyak
, and
R. W.
Field
,
Proc. Natl. Acad. Sci.
117
,
146
(
2020
).
[25]
A. L.
Steber
,
C.
Pérez
,
B.
Temelso
,
G. C.
Shields
,
A. M.
Rijs
,
B. H.
Pate
,
Z.
Kisiel
, and
M.
Schnell
,
J. Phys. Chem. Lett.
8
,
5744
(
2017
).
[26]
S. R.
Domingos
and
M.
Schnell
,
J. Phys. Chem. Lett.
9
,
4963
(
2018
).
[27]
M. C.
McCarthy
,
K. L. K.
Lee
,
J. P.
Porterfield
,
P. B.
Changala
, and
A. K.
Eckhardt
,
Mol. Phys.
119
,
e1975052
(
2021
).
[28]
J. L.
Alonso
and
J. C.
López
,
Topics in Current Chemistry
,
1st Edn
.,
Springer International Publishing
,
335
(
2014
).
[29]
G. G.
Brown
,
B. C.
Dian
,
K. O.
Douglass
,
S. M.
Geyer
,
S. T.
Shipman
, and
B. H.
Pate
,
Rev. Sci. Instrum.
79
,
053103
(
2008
).
[30]
J.
Kraitchman
,
Am. J. Phys.
21
,
17
(
1953
).
[31]
W.
Li
,
C.
Perez
,
A. L.
Steber
,
M.
Schnell
,
D.
Lv
,
G.
Wang
,
X.
Zeng
, and
M.
Zhou
,
J. Am. Chem. Soc.
145
,
4119
(
2023
).
[32]
V. S.
Malinovsky
and
J. L.
Krause
,
Eur. Phys. J. D
14
,
147
(
2001
).
[33]
P.
Pracht
,
F.
Bohle
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
22
,
7169
(
2020
).
[34]
J.
Zhang
and
M.
Dolg
,
Phys. Chem. Chem. Phys.
17
,
24173
(
2015
).
[35]
J.
Dick
,
F. Y.
Kuo
, and
I. H.
Sloan
,
Acta Numer.
22
,
133
(
2013
).
[36]
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
,
J. Chem. Theory Comput.
15
,
1652
(
2019
).
[37]
W.
Li
,
M. M.
Quesada-Moreno
,
P.
Pinacho
, and
M.
Schnell
,
Angew. Chem.
133
,
5383
(
2021
).
[38]
E.
Paquet
and
H. L.
Viktor
,
Biomed Res. Int.
2015
,
183918
(
2015
).
[39]
V. G.
Mavrantzas
,
Front. Phys.
9
,
661367
(
2021
).
[40]
S.
Grimme
,
C.
Bannwarth
, and
P.
Shushkov
,
J. Chem. Theory Comput.
13
,
1989
(
2017
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.