Understanding the interaction mechanism between divalent metal ions with amino acids is of great significance to understand the interaction between metal ions with proteins. In this study, the interaction mechanisms of Mg2+, Ca2+, and Zn2+ with amino acid side chain analogs in water were systematically studied by combining neural network potential energy surface, molecular dynamics simulation and umbrella sampling. The calculated potential mean forces not only reveal the binding process of each ion and amino acid, the most stable coordination structure, but also show the difference between different ions. In addition, we also use the neural network based potential of mean force as a standard to benchmark classical force fields, which is also meaningful for the development of force fields targeting metal ions.

[2]
K. J.
Waldron
,
J. C.
Rutherford
,
D.
Ford
, and
N. J.
Robinson
,
Nature
460
,
823
(
2009
).
[3]
S. J.
Firbank
,
M. S.
Rogers
,
C. M.
Wilmot
,
D. M.
Dooley
,
M. A.
Halcrow
,
P. F.
Knowles
,
M. J.
McPherson
, and
S. E.
Phillips
,
Proc. Natl. Acad. Sci. USA
98
,
12932
(
2001
).
[4]
A.
Halder
,
S.
Kumar
,
O.
Valsson
, and
G.
Reddy
,
J. Chem. Theory Comput.
16
,
6702
(
2020
).
[5]
N. C.
Horton
,
K. J.
Newberry
, and
J. J.
Perona
,
Proc. Natl. Acad. Sci. USA
95
,
13489
(
1998
).
[6]
M. J.
Fedor
and
J. R.
Williamson
,
Nat. Rev. Mol. Cell Biol.
6
,
399
(
2005
).
[7]
D. Mendes
de Oliveira
,
S. R.
Zukowski
,
V.
Palivec
,
J.
Hénin
,
H.
Martinez-Seara
,
D.
Ben-Amotz
,
P.
Jungwirth
, and
E.
Duboué-Dijon
,
Phys. Chem. Chem. Phys.
22
,
24014
(
2020
).
[8]
E. F.
Aziz
,
N.
Ottosson
,
S.
Eisebitt
,
W.
Eberhardt
,
B.
Jagoda-Cwiklik
,
R.
Vácha
,
P.
Jungwirth
, and
B.
Winter
,
J. Phys. Chem. B
112
,
12567
(
2008
).
[9]
Z.
Jing
,
C.
Liu
,
R.
Qi
, and
P.
Ren
,
Proc. Natl. Acad. Sci. USA
115
,
e7495
(
2018
).
[10]
A.
Sengupta
,
A.
Seitz
, and
K. M.
Merz
,
J. Am. Chem. Soc.
140
,
15166
(
2018
).
[11]
S.
Zhou
,
Y.
Wang
, and
J.
Gao
,
JACS Au
1
,
233
(
2021
).
[12]
N.
Schwierz
,
J. Chem. Phys.
152
,
224106
(
2020
).
[13]
X.
Wang
,
H.
Watanabe
,
M.
Fuji
, and
M.
Takahashi
,
Chem. Phys. Lett.
458
,
235
(
2008
).
[14]
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
[15]
M. E.
Tuckerman
,
J. Phys.: Condens. Matter.
14
,
r1297
(
2002
).
[16]
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
a1133
(
1965
).
[17]
M.
Fyta
and
R. R.
Netz
,
J. Chem. Phys.
136
,
124103
(
2012
).
[18]
C. J.
Fennell
,
A.
Bizjak
,
V.
Vlachy
, and
K. A.
Dill
,
J. Phys. Chem. B
113
,
6782
(
2009
).
[19]
B.
Hess
and
N. F. A.
van der Vegt
,
Proc. Natl. Acad. Sci. USA
106
,
13296
(
2009
).
[20]
M.
Yang
,
L.
Bonati
,
D.
Polino
, and
M.
Parrinello
,
Catal. Today
387
,
143
(
2022
).
[21]
A. Y.
Mehandzhiyski
,
E.
Riccardi
,
T. S.
van Erp
,
T. T.
Trinh
, and
B. A.
Grimes
,
J. Phys. Chem. B
119
,
10710
(
2015
).
[22]
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
[23]
M.
Rupp
,
A.
Tkatchenko
,
K. R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
[24]
V.
Botu
,
R.
Batra
,
J.
Chapman
, and
R.
Ramprasad
,
J. Phys. Chem. C
121
,
511
(
2017
).
[25]
L.
Bonati
and
M.
Parrinello
,
Phys. Rev. Lett.
121
,
265701
(
2018
).
[26]
M.
Xu
,
T.
Zhu
, and
J. Z. H.
Zhang
,
Front. Chem.
9
,
692200
(
2021
).
[27]
J.
Zeng
,
L.
Cao
,
M.
Xu
,
T.
Zhu
, and
J. Z. H.
Zhang
,
Nat. Commun.
11
,
5713
(
2020
).
[28]
L.
Zhang
,
H.
Wang
,
R.
Car
, and W. E,
Phys. Rev. Lett.
126
,
236001
(
2021
).
[29]
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and W. E,
Phys. Rev. Lett.
120
,
143001
(
2018
).
[30]
A. M.
Miksch
,
T.
Morawietz
,
J.
Kästner
,
A.
Urban
, and
N.
Artrith
,
Mach. Learn.: Sci. Technol.
2
,
031001
(
2021
).
[31]
H.
Wang
,
L.
Zhang
,
J.
Han
, and W. E,
Comput. Phys. Commun.
228
,
178
(
2018
).
[32]
Y.
Zhang
,
H.
Wang
,
W.
Chen
,
J.
Zeng
,
L.
Zhang
,
H.
Wang
, and W. E,
Comput. Phys. Commun.
253
,
107206
(
2020
).
[33]
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
[34]
T. S.
Lee
,
D. S.
Cerutti
,
D.
Mermelstein
,
C.
Lin
,
S.
LeGrand
,
T. J.
Giese
,
A.
Roitberg
,
D. A.
Case
,
R. C.
Walker
, and
D. M.
York
,
J. Chem. Inf. Model.
58
,
2043
(
2018
).
[35]
P.
Li
and
K. M.
Merz
,
J. Chem. Theory Comput.
10
,
289
(
2014
).
[36]
J.
Vandevondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
[37]
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
Vandevondele
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
[38]
[39]
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
,
Comput. Phys. Commun.
185
,
604
(
2014
).
[40]
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J. in’t
Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
,
Comput. Phys. Commun.
271
,
108171
(
2022
).
[41]
[42]
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
16
,
1339
(
1995
).
[43]
J.
Kahlen
,
L.
Salimi
,
M.
Sulpizi
,
C.
Peter
, and
D.
Donadio
,
J. Phys. Chem. B
118
,
3960
(
2014
).
[44]
M. M.
Harding
,
Acta Crystallogr. Sect. D: Biol. Crystallogr.
57
,
401
(
2001
).
[45]
R. J.
Sundberg
and
R. B.
Martin
,
Chem. Rev.
74
,
471
(
1974
).
[46]
E.
Ahlstrand
,
D.
Spångberg
,
K.
Hermansson
, and
R.
Friedman
,
Int. J. Quantum Chem.
113
,
2554
(
2013
).
[47]
D. V.
Sakharov
and
C.
Lim
,
J. Am. Chem. Soc.
127
,
4921
(
2005
).
[48]
E.
Ahlstrand
,
K.
Hermansson
, and
R.
Friedman
,
J. Phys. Chem. A
121
,
2643
(
2017
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.