The photoionization and dissociative photoionization of m-xylene (C8H10) were researched by using synchrotron radiation vacuum ultraviolet (SR-VUV) and supersonic expanding molecular beam reflectron time-of-flight mass spectrometer (RFTOF-MS) system. The photoionization efficiency spectra (PIEs) of parent ion C8H10+ and main fragment ions C8H9+ and C7H7+ were observed, and the ionization energy (IE) of m-xylene and appearance energies (AEs) of main fragment ions C8H9+ and C7H7+ were determined to be 8.60±0.03 eV, 11.76±0.04 eV and 11.85±0.05 eV, respectively. Structures of reactant, transition states (TSs), intermediates (INTs), and products involved in two dominant dissociation channels were optimized at the B3LYP/6-311++G(d,p) level, and the relative energies were calculated at the G3 level. Based on the results, two major dissociative photoionization channels, C7H7++CH3 and C8H9++H were calculated at the B3LYP/6-311++G(d,p) level. On the basis of theoretical and experimental results, the dissociative photoionization mechanisms of m-xylene were proposed. The C–H or C–C bond dissociation and hydrogen migration are the main processes in the dissociation channels of m-xylene cation.

[1]
Y.
Zhou
,
H.
Zhang
,
H. M.
Parikh
,
E. H.
Chen
,
W.
Rattanavaraha
,
E. P.
Rosen
,
W.
Wang
, and
R. M.
Kamens
,
Atmos. Environ.
45
,
3882
(
2011
).
[2]
J.
Xu
,
R. J.
Griffin
,
Y.
Liu
,
S.
Nakao
, and
D. R.
Cocker
,
Atmos. Environ.
101
,
217
(
2015
).
[3]
M. A.
Bari
and
W. B.
Kindzierski
,
Sci. Total Environ.
631/632
,
627
(
2018
).
[4]
C. W.
Lin
,
C. H.
Wu
,
P. Y.
Guo
, and
S. H.
Chang
,
J. Environ. Manage
204
,
12
(
2017
).
[5]
A. N.
Baghani
,
R.
Rostami
,
H.
Arfaeinia
,
S.
Hazrati
,
M.
Fazlzadeh
, and
M.
Delikhoon
,
Ecotoxicol. Environ. Saf.
159
,
102
(
2018
).
[6]
J. P. S.
Siqueira
,
A. M.
Pereira
,
A. M. M.
Dutra
,
P. I. M.
Firmino
, and
A. B.
Dos Santos
,
J. Environ. Manage
223
,
426
(
2018
).
[7]
F.
Gaie-Levrel
,
C.
Gutlé
,
H. W.
Jochims
,
E.
Rühl
, and
M.
Schwell
,
J. Phys. Chem. A
112
,
5138
(
2008
).
[8]
J. O.
Howell
,
J. M.
Goncalves
,
C.
Amatore
,
L.
Klasinc
,
R. M.
Wightman
, and
J. K.
Kochi
,
J. Am. Chem. Soc.
106
,
3968
(
1984
).
[9]
T.
Koenig
,
M.
Tuttle
, and
R. A.
Wielesek
,
Tetrahedron Lett.
15
,
2537
(
1974
).
[10]
T.
Kobayashi
and
S.
Nagakura
,
Chem. Lett.
1
,
903
(
2006
).
[11]
M.
Klessinger
,
Angew. Chem. Int. Ed. Engl.
11
,
525
(
1972
).
[12]
J. P.
Maier
and
D. W.
Turner
,
J. Chem. Soc., Faraday Trans. 2
69
,
196
(
1973
).
[13]
S. G.
Lias
and
P.
Ausloos
,
J. Am. Chem. Soc.
100
,
6027
(
1978
).
[14]
M. E. V.
Akopyan
and
F. I.
Vilesov
,
Zh. Fiz. Khim.
40
,
125
(
1966
).
[15]
R.
Bralsford
,
P. V.
Harris
, and
W. C.
Price
,
Proc. R. Soc. Lond. A Math. Phys. Sci.
258
,
459
(
1960
).
[16]
K.
Watanabe
,
T.
Nakayama
, and
J.
Mottl
,
J. Quant. Spectrosc. Radiat. Transf.
2
,
369
(
1962
).
[17]
A. G.
Loudon
and
R. Z.
Mazengo
,
Org. Mass Spectrom.
8
,
179
(
1974
).
[18]
J. M. S.
Tait
,
T. W.
Shannon
, and
A. G.
Harrison
,
J. Am. Chem. Soc.
84
,
4
(
1962
).
[19]
P.
Nounou
,
J. Chim. Phys.
63
,
994
(
1966
).
[20]
C. Q.
Jiao
and
S. F.
Adams
,
Chem. Phys. Lett.
573
,
24
(
2013
).
[21]
C. L.
Chen
,
L.
Li
,
P.
Tang
, and
D. R.
Cocker
,
Atmos. Environ.
180
,
256
(
2018
).
[22]
S.
Wang
,
R.
Kong
,
X.
Shan
,
Y.
Zhang
,
L.
Sheng
,
Z.
Wang
,
L.
Hao
, and
S.
Zhou
,
J. Synchrotron Radiat.
13
,
415
(
2006
).
[23]
Y.
Zhang
,
L.
Sheng
,
G.
Zhang
, and
H.
Gao
,
J. Synchrotron Radiat.
5
,
559
(
1998
).
[24]
X.
Shan
,
R.
Kong
,
S.
Wang
,
Y.
Zhao
,
Y.
Zhang
,
L.
Sheng
,
L.
Hao
, and
Z.
Wang
,
J. Univ. Sci. Technol. China
922
,
359
(
2009
).
[25]
Y.
Zhao
,
Y.
Sun
,
R.
Kong
,
Q.
Du
,
W.
Fang
,
J.
Sun
,
X.
Shan
,
F.
Liu
,
L.
Sheng
, and
Z.
Wang
,
Nucl. Tech.
32
,
561
(
2009
).
[26]
Q.
Ma
,
M.
Huang
,
X.
Liu
,
Y.
Gai
,
X.
Lin
,
C.
Yang
,
L.
Sheng
,
X.
Shan
, and
W.
Zhang
,
Chin. J. Chem. Phys.
30
,
43
(
2017
).
[27]
K.
Fukui
,
J. Chem. Phys.
74
,
4161
(
1970
).
[28]
C.
Gonzalez
and
H. B.
Schlegel
,
J. Chem. Phys.
90
,
2154
(
1989
).
[29]
A. G.
Baboul
,
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
110
,
7650
(
1999
).
[30]
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
[31]
Z.
Li
,
Y.
Yu
,
X.
Lin
,
J.
Chen
,
H.
Zhang
,
Y.
Li
,
H.
Wang
,
Q.
Meng
,
R.
Sun
,
X.
Shan
,
F.
Liu
, and
L.
Sheng
,
Chin. J. Chem. Phys.
31
,
619
(
2018
).
[32]
Z.
Wen
,
X.
Lin
,
X.
Tang
,
B.
Long
,
C.
Wang
,
C.
Zhang
,
C.
Fittschen
,
J.
Yang
,
X.
Gu
, and
W.
Zhang
,
Phys. Chem. Chem. Phys.
23
,
22096
(
2021
).
[33]
C.
Zhang
,
X.
Lin
,
X.
Tang
,
C.
Fittschen
,
S.
Hartweg
,
G. A.
Garcia
,
B.
Long
,
W.
Zhang
, and
L.
Nahon
,
Phys. Chem. Chem. Phys.
24
,
2015
(
2022
).
[34]
S. Y.
Chiang
,
M.
Bahou
,
K.
Sankaran
,
Y. P.
Lee
,
H. F.
Lu
, and
M. D.
Su
,
J. Chem. Phys.
118
,
62
(
2003
).
[35]
A.
Kepceoğlu
,
Y.
Gündoğdu
,
K. W. D.
Ledingham
, and
H. S.
Kilic
,
Anal. Lett.
53
,
290
(
2020
).
[36]
Y.
Zhao
,
Y.
Zhan
,
L.
Li
,
X.
Li
,
X.
Lian
,
P.
Huang
,
L.
Sheng
, and
J.
Chen
,
Chin. J. Chem. Phys.
30
,
303
(
2017
).
[37]
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).
[38]
L.
Xia
,
B.
Wu
,
H.
Li
,
X.
Zeng
, and
S. X.
Tian
,
J. Chem. Phys.
137
,
151102
(
2012
).
[39]
S.
Reinhard
,
Direct Photodissociation: The Reflection Principle
,
Cambridge
:
Cambridge University Press
, (
1993
).
[40]
S.
Reinhard
,
Indirect Photodissociation: Resonances and Recurrences
,
Cambridge
:
Cambridge University Press
, (
1993
).
[41]
F. H.
Field
and
J. L.
Franklin
,
J. Chem. Phys.
22
,
1895
(
1954
).
This content is only available via PDF.
You do not currently have access to this content.