Terahertz (THz) absorption is a fingerprint property of materials, due to the underlying low-frequency vibration/phonon modes being strongly dependent on the chemical constitutions and microscopic structures. The low excitation energies (0.414−41.4 meV) are related to two intrinsic properties of THz vibrations: the potential energy surfaces (PESs) are shallow, and the vibrationally excited states are usually populated via thermal fluctuations. The shallow PESs make the vibrations usually anharmonic, leading to redshifted vibrational excited state absorption; combined with considerable vibrational excited states population, characteristic THz signals are usually redshifted and congested with varying degrees at different temperatures. Combining existing experimental THz spectra at low temperatures, first principles vibration analysis, and the Morse potential, we developed a semi-empirical model to evaluate the anharmonicity of the low-frequency modes. The model was benchmarked with purine molecular crystal to generate THz spectra at different temperatures, the results were consistent with experiments. The good agreement suggests this model would facilitate the application of THz spectroscopy in molecular crystal characterization.

[1]
K.
Peng
,
D.
Jevtics
,
F. L.
Zhang
,
S.
Sterzl
,
D. A.
Damry
,
M. U.
Rothmann
,
B.
Guilhabert
,
M. J.
Strain
,
H. H.
Tan
,
L. M.
Herz
,
L.
Fu
,
M. D.
Dawson
,
A.
Hurtado
,
C.
Jagadish
, and
M. B.
Johnston
,
Science
368
,
510
(
2020
).
[2]
P.
Chevalier
,
A.
Amirzhan
,
F.
Wang
,
M.
Piccardo
,
S. G.
Johnson
,
F.
Capasso
, and
H. O.
Everitt
,
Science
366
,
856
(
2019
).
[3]
K.
Sarkar
,
P.
Devi
,
K. H.
Kim
, and
P.
Kumar
,
TrAC Trends Anal. Chem.
130
,
115989
(
2020
).
[4]
[5]
M.
Kozina
,
M.
Fechner
,
P.
Marsik
,
T.
Van Driel
,
J. M.
Glownia
,
C.
Bernhard
,
M.
Radovic
,
D.
Zhu
,
S.
Bonetti
,
U.
Staub
, and
M. C.
Hoffmann
,
Nat. Phys.
15
,
387
(
2019
).
[6]
C.
Cheng
,
Z. J.
Zhu
,
S. P.
Li
,
G. H.
Ren
,
J. B.
Zhang
,
H. X.
Cong
,
Y.
Peng
,
J. G.
Han
,
C.
Chang
, and
H. W.
Zhao
,
RSC Adv.
9
,
20240
(
2019
).
[7]
M.
Chen
,
Y. X.
Wang
,
J. G.
Wen
,
H. H.
Chen
,
W. L.
Ma
,
F.
Fan
,
Y.
Huang
, and
Z. R.
Zhao
,
ACS Appl. Mater. Interfaces
11
,
6411
(
2019
).
[8]
D. M.
Mittleman
,
J. Appl. Phys. 122, 230901 (2017)
.
[9]
H.
Ren
,
H.
Li
,
Q.
Zhang
,
L. J.
Liang
,
W. Y.
Guo
,
F.
Huang
,
Y.
Luo
, and
J.
Jiang
,
Fundam. Res.
1
,
488
(
2021
).
[10]
H.
Ren
,
Z. J.
Wang
,
S. B.
Guo
,
W. Y.
Guo
,
G. J.
Tian
, and
B. L.
Tian
,
J. Chem. Phys.
155
,
174301
(
2015
).
[11]
H.
Ren
,
Z. Z.
Lai
,
J. D.
Biggs
,
J.
Wang
, and
S.
Mukamel
,
Phys. Chem. Chem. Phys.
15
,
19457
(
2013
).
[12]
P. M.
Felker
and
Z.
Bačić
,
Chin. J. Chem. Phys.
34
,
728
(
2021
).
[13]
S.
Brem
and
E.
Malic
,
Nano Lett.
22
,
1311
(
2022
).
[14]
S. X.
Yuan
,
L.
Chen
,
Z. W.
Wang
,
W. T.
Deng
,
Z. B.
Hou
,
C.
Zhang
,
Y.
Yu
,
X. J.
Wu
, and
X. L.
Zhang
,
Nat. Commun.
12
,
5570
(
2021
).
[15]
T. L.
Cocker
,
V.
Jelic
,
R.
Hillenbrand
, and
F. A.
Hegmann
,
Nat. Photonics
15
,
558
(
2021
).
[16]
T.
Morimoto
,
M.
Nagai
,
Y.
Minowa
,
M.
Ashida
,
Y.
Yokotani
,
Y.
Okuyama
, and
Y.
Kani
,
Nat. Commun.
10
,
2662
(
2019
).
[17]
H.
Ren
,
J. L.
Yang
, and
Y.
Luo
,
J. Chem. Phys.
130
,
134707
(
2009
).
[18]
C. Z.
Shen
,
J.
Peng
,
J. X.
Guan
,
C. Q.
Hao
,
Z. H.
Yu
,
H.
Jiang
, and
J. R.
Zheng
,
Chin. J. Chem. Phys.
35
,
95
(
2022
).
[19]
A. G.
Davies
,
A. D.
Burnett
,
W. H.
Fan
,
E. H.
Linfield
, and
J. E.
Cunningham
,
Mater. Today
11
,
18
(
2008
).
[20]
P.
Bawuah
and
J. A.
Zeitler
,
TrAC Trends Anal. Chem.
139
,
116272
(
2021
).
[21]
A.
Khalatpour
,
A. K.
Paulsen
,
C.
Deimert
,
Z. R.
Wasilewski
, and
Q.
Hu
,
Nat. Photonics
15
,
16
(
2021
).
[22]
M.
Shalini
and
M. G.
Madhan
,
Optik
231
,
166393
(
2021
).
[23]
A. D.
Koulouklidis
,
C.
Gollner
,
V.
Shumakova
,
V. Y.
Fedorov
,
A.
Pugžlys
,
A.
Baltuška
, and
S.
Tzortzakis
,
Nat. Commun.
11
,
292
(
2020
).
[24]
T.
Nakamura
,
T.
Yokaichiya
, and
D. G.
Fedorov
,
J. Phys. Chem. Lett.
12
,
8757
(
2021
).
[25]
M. T.
Ruggiero
and
J. A.
Zeitler
,
J. Phys. Chem. B
120
,
11733
(
2019
).
[26]
J.
Zhou
and
S. H.
Zhang
,
npj 2D Mater. Appl.
5
,
16
(
2021
).
[27]
R.
Damari
,
O.
Weinberg
,
D.
Krotkov
,
N.
Demina
,
K.
Akulov
,
A.
Golombek
,
T.
Schwartz
, and
S.
Fleischer
,
Nat. Commun.
10
,
3248
(
2019
).
[28]
M.
Takahashi
,
N.
Okamura
,
X. M.
Ding
,
H.
Shirakawa
, and
H.
Minamide
,
CrystEngComm
20
,
1960
(
2018
).
[29]
J. L.
Zhong
,
T.
Mori
,
T.
Kashiwagi
,
M.
Yamashiro
,
S.
Kusunose
,
H.
Mimami
,
M.
Tsujimoto
,
T.
Tanaka
,
H.
Kawashima
,
S.
Nakagawa
,
J.
Ito
,
M.
Kijima
,
M.
Iji
,
M. M.
Watanabe
, and
K.
Kadowaki
,
Spectrochim. Acta A Mol. Biomol. Spectrosc.
244
,
118828
(
2021
).
[30]
Y. F.
Chen
,
W. L.
Ma
,
C. W.
Tan
,
M.
Luo
,
W.
Zhou
,
N. J.
Yao
,
H.
Wang
,
L. L.
Zhang
,
T. F.
Xu
,
T.
Tong
,
Y.
Zhou
,
Y. B.
Xu
,
C. H.
Yu
,
C. X.
Shan
,
H. L.
Peng
,
F. Y.
Yue
,
P.
Wang
,
Z. M.
Huang
, and
W. D.
Hu
,
Adv. Funct. Mater.
31
,
2009554
(
2021
).
[31]
A.
Tcypkin
,
M.
Zhukova
,
M.
Melnik
,
I.
Vorontsova
,
M.
Kulya
,
S.
Putilin
,
S.
Kozlov
,
S.
Choudhary
, and
R. W.
Boyd
,
Phys. Rev. Appl.
15
,
054009
(
2021
).
[32]
W.
Chen
,
P.
Roelli
,
H. T.
Hu
,
S.
Verlekar
,
S. P.
Amirtharaj
,
A. I.
Barreda
,
T. J.
Kippenberg
,
M.
Kovylina
,
E.
Verhagen
,
A.
Martínez
, and
C.
Galland
,
Science
374
,
1264
(
2021
).
[33]
B.
Monserrat
,
N.
Drummond
, and
R.
Needs
,
Phys. Rev. B
87
,
144302
(
2013
).
[34]
S. J.
Dampf
and
T. M.
Korter
,
J. Phys. Chem. A
123
,
2058
(
2019
).
[35]
C. A.
Onate
and
J. O. A.
Idiodi
,
Commun. Theor. Phys.
66
,
275
(
2016
).
[36]
J. P.
Dahl
and
M.
Springborg
,
J. Chem. Phys.
88
,
4535
(
1988
).
[37]
F. F.
Sizov
,
Semicond. Phys. Quantum Electron. Opto-electron.
22
,
67
(
2019
).
[38]
Y. I.
Jhon
,
M.
Seo
, and
Y. M.
Jhon
,
Nanoscale
10
,
69
(
2018
).
[39]
E. F.
De Lima
and
J. E. M.
Hornos
,
J. Phys. B: At. Mol. Opt. Phys.
38
,
815
(
2005
).
[40]
D. G.
Watson
,
R. M.
Sweet
, and
R. E.
Marsh
,
Acta Cryst.
19
,
573
(
1965
).
[41]
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
[42]
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
[43]
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
[44]
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
[45]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
[46]
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
[47]
G.
Romáan-Pérez
and
J. M.
Soler
,
Phys. Rev. Lett.
103
,
096102
(
2009
).
[48]
X.
Gonze
and
C.
Lee
,
Phys. Rev. B
55
,
10355
(
1997
).
[49]
G.
Zheng
,
S. J.
Clark
,
S.
Brand
, and
R. A.
Abram
,
Phys. Rev. B
74
,
165210
(
2006
).
[50]
Y. C.
Shen
,
P. C.
Upadhya
,
E. H.
Linfield
, and
A. G.
Davies
,
Appl. Phys. Lett.
82
,
2350
(
2003
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.