Scanning tunneling microscope (STM) induced luminescence can be used to study various optoelectronic phenomena of single molecules and to understand the fundamental photophysical mechanisms involved. To clearly observe the molecule-specific luminescence, it is important to improve the quantum efficiency of molecules in the metallic nanocavity. In this work, we investigate theoretically the influence of an atomic-scale protrusion on the substrate on the emission properties of a point dipole oriented parallel to the substrate in a silver plasmonic nanocavity by electromagnetic simulations. We find that an atomic-scale protrusion on the substrate can strongly enhance the quantum efficiency of a horizontal dipole emitter, similar to the situation with a protrusion at the tip apex. We also consider a double-protrusion junction geometry in which there is an atomic-scale protrusion on both the tip and the substrate, and find that this geometry does provide significantly enhanced emission compared with the protrusion-free situation, but does not appear to improve the quantum efficiency compared to the mono-protrusion situation either at the tip apex or on the substrate. These results are believed to be instructive for future STM induced electroluminescence and photoluminescence studies on single molecules.

[1]
R.
Berndt
,
R.
Gaisch
,
J. K.
Gimzewski
,
B.
Reihl
,
R. R.
Schlittler
,
W. D.
Schneider
, and
M.
Tschudy
,
Science
262
,
1425
(
1993
).
[2]
X. H.
Qiu
,
G. V.
Nazin
, and
W.
Ho
,
Science
299
,
542
(
2003
).
[3]
Z. C.
Dong
,
X. L.
Guo
,
A. S.
Trifonov
,
P. S.
Dorozhkin
,
K.
Miki
,
K.
Kimura
,
S.
Yokoyama
, and
S.
Mashiko
,
Phys. Rev. Lett.
92
,
086801
(
2004
).
[4]
E.
Cavar
,
M. C.
Blum
,
M.
Pivetta
,
F.
Patthey
,
M.
Chergui
, and
W. D.
Schneider
,
Phys. Rev. Lett.
95
,
196102
(
2005
).
[5]
C.
Chen
,
P.
Chu
,
C. A.
Bobisch
,
D. L.
Mills
, and
W.
Ho
,
Phys. Rev. Lett.
105
,
217402
(
2010
).
[6]
Z. C.
Dong
,
X. L.
Zhang
,
H. Y.
Gao
,
Y.
Luo
,
C.
Zhang
,
L. G.
Chen
,
R.
Zhang
,
X.
Tao
,
Y.
Zhang
,
J. L.
Yang
, and
J. G.
Hou
,
Nat. Photonics
4
,
50
(
2010
).
[7]
Y.
Zhang
,
Y.
Luo
,
Y.
Zhang
,
Y. J.
Yu
,
Y. M.
Kuang
,
L.
Zhang
,
Q. S.
Meng
,
Y.
Luo
,
J. L.
Yang
,
Z. C.
Dong
, and
J. G.
Hou
,
Nature
531
,
623
(
2016
).
[8]
H.
Imada
,
K.
Miwa
,
M.
Imai-Imada
,
S.
Kawahara
,
K.
Kimura
, and
Y.
Kim
,
Nature
538
,
364
(
2016
).
[9]
K.
Kuhnke
,
C.
Grosse
,
P.
Merino
, and
K.
Kern
,
Chem. Rev.
117
,
5174
(
2017
).
[10]
L.
Zhang
,
Y. J.
Yu
,
L. G.
Chen
,
Y.
Luo
,
B.
Yang
,
F. F.
Kong
,
G.
Chen
,
Y.
Zhang
,
Q.
Zhang
,
Y.
Luo
,
J. L.
Yang
,
Z. C.
Dong
, and
J. G.
Hou
,
Nat. Commun.
8
,
580
(
2017
).
[11]
B.
Doppagne
,
M. C.
Chong
,
H.
Bulou
,
A.
Boeglin
,
F.
Scheurer
, and
G.
Schull
,
Science
361
,
251
(
2018
).
[12]
G.
Chen
,
Y.
Luo
,
H. Y.
Gao
,
J.
Jiang
,
Y. J.
Yu
,
L.
Zhang
,
Y.
Zhang
,
X. G.
Li
,
Z. Y.
Zhang
, and
Z. C.
Dong
,
Phys. Rev. Lett.
122
,
177401
(
2019
).
[13]
K.
Kimura
,
K.
Miwa
,
H.
Imada
,
M.
Imai-Imada
,
S.
Kawahara
,
J.
Takeya
,
M.
Kawai
,
M.
Galperin
, and
Y.
Kim
,
Nature
570
,
210
(
2019
).
[14]
Y.
Luo
,
G.
Chen
,
Y.
Zhang
,
L.
Zhang
,
Y. J.
Yu
,
F. F.
Kong
,
X. J.
Tian
,
Y.
Zhang
,
C. X.
Shan
,
Y.
Luo
,
J. L.
Yang
,
V.
Sandoghdar
,
Z. C.
Dong
, and
J. G.
Hou
,
Phys. Rev. Lett.
122
,
233901
(
2019
).
[15]
B.
Doppagne
,
T.
Neuman
,
R.
Soria-Martinez
,
L. E. P.
Lopez
,
H.
Bulou
,
M.
Romeo
,
S.
Berciaud
,
F.
Scheurer
,
J.
Aizpurua
, and
G.
Schull
,
Nat. Nanotechnol.
15
,
207
(
2020
).
[16]
B.
Yang
,
G.
Chen
,
A.
Ghafoor
,
Y. F.
Zhang
,
Y.
Zhang
,
Y.
Zhang
,
Y.
Luo
,
J. L.
Yang
,
V.
Sandoghdar
,
J.
Aizpurua
,
Z. C.
Dong
, and
J. G.
Hou
,
Nat. Photonics
14
,
693
(
2020
).
[17]
H.
Imada
,
M.
Imai-Imada
,
K.
Miwa
,
H.
Yamane
,
T.
Iwasa
,
Y.
Tanaka
,
N.
Toriumi
,
K.
Kimura
,
N.
Yokoshi
,
A.
Muranaka
,
M.
Uchiyama
,
T.
Taketsugu
,
Y. K.
Kato
,
H.
Ishihara
, and
Y.
Kim
,
Science
373
,
95
(
2021
).
[18]
F.
Benz
,
M. K.
Schmidt
,
A.
Dreismann
,
R.
Chikkaraddy
,
Y.
Zhang
,
A.
Demetriadou
,
C.
Carnegie
,
H.
Ohadi
,
B.
de Nijs
,
R.
Esteban
,
J.
Aizpurua
, and
J. J.
Baumberg
,
Science
354
,
726
(
2016
).
[19]
M.
Barbry
,
P.
Koval
,
F.
Marchesin
,
R.
Esteban
,
A. G.
Borisov
,
J.
Aizpurua
, and
D.
Sanchez-Portal
,
Nano Lett.
15
,
3410
(
2015
).
[20]
S.
Trautmann
,
J.
Aizpurua
,
I.
Gotz
,
A.
Undisz
,
J.
Dellith
,
H.
Schneidewind
,
M.
Rettenmayr
, and
V.
Deckert
,
Nanoscale
9
,
391
(
2017
).
[21]
M.
Urbieta
,
M.
Barbry
,
Y.
Zhang
,
P.
Koval
,
D.
Sanchez-Portal
,
N.
Zabala
, and
J.
Aizpurua
,
ACS Nano
12
,
5855
(
2018
).
[22]
T.
Wu
,
W.
Yan
, and
P.
Lalanne
,
ACS Photonics
8
,
307
(
2021
).
[23]
W.
Li
,
Q.
Zhou
,
P.
Zhang
, and
X. W.
Chen
,
Phys. Rev. Lett.
126
,
257401
(
2021
).
[24]
J. Z.
Zhu
,
G.
Chen
,
T.
Ijaz
,
X. G.
Li
, and
Z. C.
Dong
,
J. Chem. Phys.
154
,
214706
(
2021
).
[25]
A. D.
Rakic
,
A. B.
Djurisic
,
J. M.
Elazar
, and
M. L.
Majewski
,
Appl. Opt.
37
,
5271
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.