A novel electrochemical non-enzymatic glucose sensor based on three-dimensional Au/MXene nanocomposites was developed. MXenes were prepared using the mild etched method, and the porous foam of Au nanoparticles was combined with the MXene by means of in situ synthesis. By controlling the mass of MXene in the synthesis process, porous foam with Au nanoparticles was obtained. The three-dimensional foam structure of nanoparticles was confirmed by scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the electrochemical performance of the Au/MXene nanocomposites. The Au/MXene nanocomposites acted as a fast redox probe for non-enzymatic glucose oxidation and showed good performance, including a high sensitivity of 22.45 µA · (mmol/L)−1 ·cm−1 and a wide linear range of 1 — 12 mmol/L. Studies have shown that MXene as a catalyst-supported material is beneficial to enhance the conductivity of electrons and increase the loading rate of the catalyst materials. The foam structure with Au nanoparticles can provide a larger surface area, increase the contact area with the molecule in the catalytic reaction, and enhance the electrochemical reaction signal. In summary, this study shows that Au/MXene nanoparticles have the potential to be used in non-enzymatic glucose sensors.

[1]
E.
Asadian
,
S.
Shahrokhian
, and
A. I.
Zad
,
J. Electroanal. Chem.
808
,
114
(
2018
).
[2]
F.
Wang
,
F.
Zhang
,
W.
Liang
,
L.
Chen
,
Y.
Li
, and
X.
He
,
Sensor. Actuat. B-Chem.
273
,
41
(
2018
).
[3]
R.
Li
,
M.
Zhen
,
M.
Guan
,
D.
Chen
,
G.
Zhang
,
J.
Ge
,
P.
Gong
,
C.
Wang
, and
C.
Shu
,
Biosens. Bioelectron.
47
,
502
(
2013
).
[4]
H.
Teymourian
,
A.
Barfidokht
, and
J.
Wang
,
Chem. Soc. Rev.
49
,
7671
(
2020
).
[5]
R. O.
Esenaliev
,
K. V.
Larin
, and
I. V.
Larina
,
Opt. Lett.
26
,
992
(
2001
).
[6]
M.
Wei
,
Y.
Qiao
,
H.
Zhao
,
J.
Liang
,
T. S.
Li
,
Y.
Luo
,
S. Y.
Lu
,
W. B.
Lu
, and
X.
Sun
,
Chem. Commun.
56
,
74553
(
2020
).
[7]
L. C.
Clark
 Jr.
and
C.
Lyons
,
Ann. Ny. Acad. Sci.
102
,
29
(
1962
).
[8]
G.
Wang
,
X.
He
,
L.
Wang
,
A.
Gu
,
Y.
Huang
,
B.
Fang
,
B.
Geng
, and
X.
Zhang
,
Microchim. Acta
180
,
161
(
2013
).
[9]
L.
Wang
,
X.
Chen
,
C.
Liu
, and
W.
Yang
,
Sensor. Actuat. B-Chem.
233
,
199
(
2016
).
[10]
J.
Yang
,
X.
Liang
,
L.
Cui
,
H.
Liu
,
J.
Xie
, and
W.
Liu
,
Biosens. Bioelectron.
80
,
171
(
2016
).
[11]
Y. B.
Vassilyev
,
O. A.
Khazova
, and
N. N.
Nikolaeva
,
J. Electroanal. Chem. Interfacial Electrochem.
196
,
105
(
1985
).
[12]
Y.
Zhang
,
L.
Su
,
D.
Manuzzi
,
H. V. E.
de los Monteros
,
W.
Jia
,
D.
Huo
,
C.
Huo
, and
Y.
Lei
,
Biosens. Bioelectron.
31
,
426
(
2012
).
[13]
S.
Cherevko
and
C. H.
Chung
,
Sensor. Actuat. B-Chem.
142
,
216
(
2009
).
[14]
X.
Wang
,
C. Y.
Ge
,
K.
Chen
, and
Y. X.
Zhang
,
Electrochim. Acta
259
,
225
(
2018
).
[15]
Z. P.
Deng
,
Y.
Sun
,
Y. C.
Wang
, and
J. D.
Gao
,
Sensors-Basel
18
,
3972
(
2018
).
[16]
W.
Zhao
,
R.
Zhang
,
S.
Xu
,
J.
Cai
,
X.
Zhu
,
Y.
Zhu
,
W.
Wei
,
X. Y.
Liu
, and
J.
Luo
, Biosens.
Bioelectron.
100
,
497
(
2018
).
[17]
Y.
Yang
,
X.
Jiang
,
J.
Chao
,
C.
Song
,
B.
Liu
,
D.
Zhu
,
Y. Z.
Sun
,
B. Y.
Yang
,
Q. W.
Zhang
,
Y.
Chen
, and
L.
Wang
,
Sci. China Mater.
60
,
1129
(
2017
).
[18]
S.
Cho
and
C.
Kang
,
Electroanalysis
19
,
2315
(
2007
).
[19]
Y. G.
Zhou
,
S.
Yang
,
Q. Y.
Qian
, and
X. H.
Xia
,
Electrochem. Commun.
11
,
216
(
2009
).
[20]
C. J.
Shearer
,
A.
Cherevan
, and
D.
Eder
,
Adv. Mater.
26
,
2295
(
2014
).
[21]
V. K.
Tran
,
E.
Ko
,
Y.
Geng
,
M. K.
Kim
,
G. H.
Jin
,
S. E.
Son
,
W.
Hur
, and
G. H.
Seong
,
J. Electroanal. Chem.
826
,
29
(
2018
).
[22]
A.
Sinha
,
H.
Zhao
,
Y.
Huang
,
X.
Lu
,
J.
Chen
, and
R.
Jain
,
TrAc Trend. Anal. Chem.
105
,
424
(
2018
).
[23]
J.
Michael
,
Q. F.
Zhang
, and
D. L.
Wang
,
Nanomater. Nanotechno.
9
,
1847980418824470
(
2019
).
[24]
M.
Xu
,
Y.
Song
,
Y.
Ye
,
C.
Gong
,
Y.
Shen
,
L.
Wang
, and
L.
Wang
,
Sensor Actuat. B-Chem.
252
,
1187
(
2017
).
[25]
L. H.
Li
and
W. D.
Zhang
,
Microchim. Acta
163
,
305
(
2008
).
[26]
H. H.
Li
and
S. H.
Yu
,
Sci. China Mater.
60
,
461
(
2017
).
[27]
M.
Naguib
,
M.
Kurtoglu
,
V.
Presser
,
J.
Lu
,
J.
Niu
,
M.
Heon
,
L.
Hultman
,
Y.
Gogotsi
, and
M. W.
Barsoum
,
Adv. Mater.
23
,
4248
(
2011
).
[28]
F.
Wu
,
H.
Zheng
,
W.
Wang
,
Q.
Wu
,
Q.
Zhang
,
J.
Guo
,
B. Z.
Pu
,
X. Y.
Shi
,
J. B.
Li
,
X. M.
Chen
, and
W.
Hong
,
Sci. China Mater.
63
,
1
(
2020
).
[29]
M.
Ghidiu
,
M. R.
Lukatskaya
,
M. Q.
Zhao
,
Y.
Gogotsi
, and
M. W.
Barsoum
,
Nature
516
,
78
(
2014
).
[30]
E. A.
Mayerberger
,
R. M.
Street
,
R. M.
McDaniel
, and
M. W.
Barsoum
,
RSC. Adv.
8
,
35386
(
2018
).
[31]
K.
Rasool
,
M.
Helal
,
A.
Ali
,
C. E.
Ren
,
Y.
Gogotsi
, and
K. A.
Mahmoud
,
ACS Nano
10
,
3674
(
2016
).
[32]
Q.
Jiang
,
N.
Kurra
,
M.
Alhabeb
,
Y.
Gogotsi
, and
H. N.
Alshareef
,
Adv. Energy Mater.
8
,
1703043
(
2018
).
[33]
J.
Liu
,
H. B.
Zhang
,
R.
Sun
,
Y.
Liu
,
Z.
Liu
,
A.
Zhou
, and
Z. Z.
Yu
,
Adv. Mater.
29
,
1702367
(
2017
).
[34]
H.
Liu
,
C.
Duan
,
C.
Yang
,
W.
Shen
,
F.
Wang
, and
Z.
Zhu
,
Sensor. Actuat. B-Chem.
218
,
60
(
2015
).
[35]
R. B.
Rakhi
,
P.
Nayak
,
C.
Xia
, and
H. N.
Alshareef
,
Sci. Rep-UK
6
,
1
(
2016
).
[36]
M.
Li
,
L.
Fang
,
H.
Zhou
,
F.
Wu
,
Y.
Lu
,
H.
Luo
,
Y. X.
Zhang
, and
B.
Hu
,
Appl. Surf. Sci.
495
,
143554
(
2019
).
[37]
T.
Zhang
,
L.
Pan
,
H.
Tang
,
F.
Du
,
Y.
Guo
,
T.
Qiu
, and
J.
Yang
,
J. Alloys Compd.
695
,
818
(
2017
).
[38]
R. P.
Janek
,
W. R.
Fawcett
, and
A.
Ulman
,
Langmuir
14
,
3011
(
1998
).
[39]
M.
Khazaei
,
M.
Arai
,
T.
Sasaki
,
C. Y.
Chung
,
N. S.
Venkataramanan
,
M.
Estili
,
Y.
Sakka
, and
Y.
Kawazoe
,
Adv. Funct. Mater.
23
,
2185
(
2013
).
[40]
M.
Naguib
,
V. N.
Mochalin
,
M. W.
Barsoum
, and
Y.
Gogotsi
,
Adv. Mater.
26
,
992
(
2014
).
[41]
H.
Chen
,
C. K.
Heng
,
P. D.
Puiu
,
X. D.
Zhou
,
A. C.
Lee
,
T. M.
Lim
, and
S. N.
Tan
,
Anal. Chim. Acta
554
,
52
(
2005
).
[42]
S. B.
Aoun
,
Z.
Dursun
,
T.
Koga
,
G. S.
Bang
,
T.
Sotomura
, and
I.
Taniguchi
,
J. Electroanal. Chem.
567
,
175
(
2004
).
[43]
M.
Tominaga
,
T.
Shimazoe
,
M.
Nagashima
, and
I.
Taniguchi
,
Electrochem. Commun.
7
,
189
(
2005
).
[44]
Y.
Xian
,
Y.
Hu
,
F.
Liu
,
Y.
Xian
,
H.
Wang
, and
L.
Jin
,
Biosens. Bioelectron.
21
,
1996
(
2006
).
[45]
S.
Karra
,
M.
Wooten
,
W.
Griffith
, and
W.
Gorski
,
Electrochim. Acta
218
,
8
(
2016
).
[46]
J.
Chen
,
H.
Zheng
,
J.
Kang
,
F.
Yang
,
Y.
Cao
, and
M.
Xiang
,
RSC Adv.
7
,
3035
(
2017
).
[47]
Z.
Liu
,
L.
Huang
,
L.
Zhang
,
H.
Ma
, and
Y.
Ding
,
Electrochim. Acta
54
,
7286
(
2009
).
[48]
L.
Qin
,
L.
He
,
J.
Zhao
,
B.
Zhao
,
Y.
Yin
, and
Y.
Yang
,
Sensor. Actuat. B-Chem.
240
,
779
(
2017
).
[49]
Y.
Su
,
H.
Guo
,
Z.
Wang
,
Y.
Long
,
W.
Li
, and
Y.
Tu
,
Sensor. Actuat. B-Chem.
255
,
2510
(
2018
).
[50]
C.
Shen
,
J.
Su
,
X.
Li
,
J.
Luo
, and
M.
Yang
,
Sensor. Actuat. B-Chem.
209
,
695
(
2015
).
[51]
S.
Park
,
H.
Boo
, and
T. D.
Chung
,
Anal. Chim. Acta
556
,
46
(
2006
).
[52]
J.
Zhang
,
N.
Kong
,
D.
Hegh
,
K. A. S.
Usman
,
G.
Guan
,
S.
Qin
,
I.
Jurewicz
,
W. R.
Yang
, and
J. M.
Razal
,
ACS Appl. Mater. Inter.
12
,
34032
(
2020
).
[53]
J.
Wang
,
M.
Musameh
, and
Y.
Lin
,
J. Am. Chem. Soc.
125
,
2408
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.