Photophysical processes occurring within organic semiconductors is important for designing and fabricating organic solar cells. Copper phthalocyanine (CuPc) is a typical electron acceptor. In this work, the triplet exciton lifetime is prolonged by altering the molecular stacking pattern of the CuPc film. For CuPc thin films, the excited state decays are mainly determined by the triplet-triplet annihilation process. The ultrafast transient absorption measurements indicate that the primary annihilation mechanism is one-dimensional exciton diffusion collision destruction. The decay kinetics show a clearly time-dependent annihilation rate constant with γt−1/2. Annihilation rate constants are determined to be γ0 = (2.87±0.02)×10−20 cm3·s−1/2 and (1.42±0.02)×10−20 cm3·s−1/2 for upright and lying-down configurations, respectively. Compared to the CuPc thin film with an upright configuration, the thin film with a lying-down configuration shows longer exciton lifetime and higher absorbance, which are beneficial to organic solar cells. The results in this work have important implications on the design and mechanistic understanding of organic optoelectronic devices.

[1]
H.
Tian
,
G.
Boschloo
, and
A.
Hagfeldt
,
Molecular Devices for Solar Energy Conversion and Storage
,
Singapore
:
Springer
, (
2018
).
[2]
G. J.
Hedley
,
A.
Ruseckas
, and
I. D. W.
Samuel
,
Chem. Rev.
117
,
796
(
2016
).
[3]
L. G.
Kaake
,
J. J.
Jasieniak
,
R. C.
Bakus
,
G. C.
Welch
,
D.
Moses
,
G. C.
Bazan
, and
A. J.
Heeger
,
J. Am. Chem. Soc.
134
,
19828
(
2012
).
[4]
Z.
Guo
,
Y.
Wan
,
M.
Yang
,
J.
Snaider
,
K.
Zhu
, and
L.
Huang
,
Science
356
,
59
(
2017
).
[5]
L.
Xue
,
Y.
Yang
,
J.
Xu
,
C.
Zhang
,
H.
Bin
,
Z.
Zhang
,
B.
Qiu
,
X.
Li
,
C.
Sun
,
L.
Gao
,
J.
Yao
,
X.
Chen
,
Y.
Yang
,
M.
Xiao
, and
Y.
Li
,
Adv. Mater.
29
,
1703344
(
2017
).
[6]
Y.
Li
,
L.
Zhong
,
B.
Gautam
,
H.
Bin
,
J.
Lin
,
F.
Wu
,
Z.
Zhang
,
Z.
Jiang
,
Z.
Zhang
,
K.
Gundogdu
,
Y.
Li
, and
L.
Liao
,
Energy Environmental Science
10
,
1610
(
2017
)
[7]
P.
Peumans
and
S. R.
Forrest
,
Appl. Phys. Lett.
79
,
126
(
2001
).
[8]
S.
Pfuetzner
,
C.
Mickel
,
J.
Jankowski
,
M.
Hein
,
J.
Meiss
,
C.
Schuenemann
,
C.
Elschner
,
A. A.
Levin
,
B.
Rellinghaus
,
K.
Leo
, and
M.
Riede
,
Organic Electronics
12
,
435
(
2011
).
[9]
K. L.
Mutolo
,
E. I.
Mayo
,
B. P.
Rand
,
S. R.
Forrest
, and
M. E.
Thompson
,
J. Am. Chem. Soc.
128
,
8108
(
2006
).
[10]
K.
Vasseur
,
K.
Broch
,
A. L.
Ayzner
,
B. P.
Rand
,
D.
Cheyns
,
C.
Frank
,
F.
Schreiber
,
M. F.
Toney
,
L.
Froyen
, and
P.
Heremans
,
ACS Appl. Mater. Interf.
5
,
8505
(
2013
).
[11]
J.
Yang
,
D.
Yan
, and
T. S.
Jones
,
Chem. Rev.
115
,
5570
(
2015
).
[12]
C.
Videlot
,
A. E.
Kassmi
, and
D.
Fichou
,
Sol. Energy Mater. Sol. Cells
63
,
69
(
2000
)
[13]
W.
Chen
,
H.
Huang
,
S.
Chen
,
Y. L.
Huang
,
X. Y.
Gao
, and
A. T. S.
Wee
,
Chem. Mater.
20
,
7017
(
2008
).
[14]
J.
Yang
,
F.
Zhu
,
B.
Yu
,
H.
Wang
, and
D.
Yan
,
Appl. Phys. Lett.
100
,
103305
(
2012
).
[15]
C. H.
Cheng
,
J.
Wang
,
G. T.
Du
,
S. H.
Shi
,
Z. J.
Du
,
Z. Q.
Fan
,
J. M.
Bian
, and
M. S.
Wang
,
Appl. Phys. Lett.
97
,
083305
(
2010
).
[16]
J.
Liu
,
J.
Leng
,
K.
Wu
,
J.
Zhang
, and
S.
Jin
,
J. Am. Chem. Soc.
139
,
1432
(
2017
).
[17]
A. W.
Snow
and
W. R.
Barger
,
Phthalocyanine Properties and Applications
,
C. C.
Leznoff
and
A. B. P.
Lever
Eds.,
New York
:
Wiley
, (
1989
).
[18]
J. H.
Sharp
and
M.
Abkowitz
,
J. Phys. Chem.
77
,
481
(
1973
).
[19]
T.
Gunaratne
,
V. O.
Kennedy
,
M. E.
Kenney
, and
M. A. J.
Rodgers
,
J. Physical Chem. A
108
,
2576
(
2004
).
[20]
B.
Valeur
,
Molecular Fluorescence: Principles and Applications
,
New York
:
Wiley (y2001
).
[21]
B. W.
Caplins
,
T. K.
Mullenbach
,
R. J.
Holmes
, and
D. A.
Blank
,
Phys. Chem. Chem. Phys.
18
,
11454
(
2016
).
[22]
X.
He
,
G.
Zhu
,
J.
Yang
,
H.
Chang
,
Q.
Meng
,
H.
Zhao
,
X.
Zhou
,
S.
Yue
,
Z.
Wang
,
J.
Shi
,
L.
Gu
,
D.
Yan
, and
Y.
Weng
,
Sci. Rep.
5
,
17076
(
2015
).
[23]
J.
Park
,
O. G.
Reid
, and
G.
Rumbles
,
J. Phys. Chem. B
119
,
7729
(
2014
).
[24]
K.
Yoshino
,
M.
Hikida
,
K.
Tatsuno
,
K.
Kaneto
, and
Y.
Inuishi
,
J. Phys. Soc. Jpn.
34
,
441
(
1973
).
[25]
M.
Liao
and
S.
Scheiner
,
J. Chem. Phys.
114
,
9780
(
2001
).
[26]
G. J.
Dutton
and
S. W.
Robey
,
J. Phys. Chem. C
116
,
19173
(
2012
).
[27]
B. W.
Caplins
,
T. K.
Mullenbach
,
R. J.
Holmes
, and
D. A.
Blank
,
J. Phys. Chem. C
119
,
27340
(
2015
).
[28]
A. V.
Nikolaitchik
and
M. A. J.
Rodgers
,
J. Phys. Chem. A
103
,
7597
(
1999
).
[29]
[30]
S.
Chandrasekhar
,
Rev. Modern Phys.
15
,
1
(
1943
)
[31]
H.
Marciniak
,
X.
Li
,
F.
Würthner
, and
S.
Lochbrunner
,
J. Phys. Chem. A
115
,
648
(
2011
).
[32]
J.
Baumann
and
M. D.
Fayer
,
J. Chem. Phys.
85
,
4087
(
1986
).
[33]
P.
Peumans
,
A.
Yakimov
, and
S. R.
Forrest
,
J. Appl. Phys.
93
,
3693
(
2003
).
[34]
Y.
Terao
,
H.
Sasabe
, and
C.
Adachi
,
Appl. Phys. Lett.
90
,
103515
(
2007
).
[35]
M.
Ichikawa
,
Thin Solid Films
527
,
239
(
2013
).
[36]
T.
Stbinger
and
W.
Brtting
,
J. Appl. Phys.
90
,
3632
(
2001
).
[37]
F.
Piersimoni
,
D.
Cheyns
,
K.
Vandewal
,
J. V.
Manca
, and
B. P.
Rand
,
J. Phys. Chem. Lett.
3
,
2064
(
2012
).
[38]
B. I.
Greene
and
R. R.
Millard
,
Phys. Rev. Lett.
55
,
1331
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.