Cell membrane fusion is a fundamental biological process involved in a number of cellular living functions. Regarding this, divalent cations can induce fusion of the lipid bilayers through binding and bridging of divalent cations to the charged lipids, thus leading to the cell membrane fusion. How-ever, the elaborate mechanism of cell membrane fusion induced by divalent cations is still needed to be elucidated. Here, surface/interface sensitive sum frequency generation vibrational spectroscopy (SFG-VS) and dynamic light scattering (DLS) were applied in this research to study the responses of phospholipid monolayer to the exposure of divalent metal ions i.e. Ca2+ and Mg2+. According to the particle size distribution results measured by DLS experiments, it was found that Ca2+ could induce inter-vesicular fusion while Mg2+ could not. An octadecyltrichlorosilane self-assembled monolayer (OTS SAM)-lipid monolayer system was designed to model the cell membrane for the SFG-VS experiment. Ca2+ could interact with the lipid PO2 head groups more strongly, resulting in cell membrane fusion more easily, in comparison with Mg2+. No specific interaction between the two metal cations and the C=O groups was observed. However, the C=O orientations changed more after Ca2+-PO2 binding than Mg2+ mediation on lipid monolayer. Meanwhile, Ca2+ could induce dehydration of the lipids (which should be related to the strong Ca2+-PO2 interaction), leading to the reduced hindrance for cell membrane fusion.

[1]
D. M.
Eckert
and
P. S.
Kim
,
Annu. Rev. Biochem.
70
,
777
(
2001
).
[2]
S.
Hoppins
,
L.
Lackner
, and
J.
Nunnari
,
Annu. Rev. Biochem.
76
,
751
(
2001
).
[3]
P. L.
McNeil
and
R. A.
Steinhardt
,
Annu. Rev. Cell Dev. Biol.
19
,
697
(
2003
).
[4]
D.
Duelli
and
Y.
Lazebnik
,
Nat. Rev. Cancer.
7
,
968
(
2007
).
[5]
A.
Sapir
,
O.
Avinoam
, and
B.
Podbilewicz
,
Dev. Cell.
14
,
11
(
2008
).
[6]
H.
Harashima
,
Y.
Shinohara
, and
H.
Kiwada
,
Eur. J. Pharm. Sci.
13
,
85
(
2001
).
[7]
[8]
Y. A.
Chen
,
Nat. Rev. Mol. Cell Biol.
2
,
98
(
2001
).
[9]
J.
Diao
,
Z.
Su
,
Y.
Ishitsuka
,
B.
Lu
,
K. S.
Lee
,
Y.
Lai
,
Y.
Shin
, and
T.
Ha
,
Nat. Commun.
1
,
1
(
2010
).
[10]
[11]
R.
Leventis
,
J.
Gagne
,
N.
Fuller
,
R.
Rand
, and
J.
Silvius
,
Biochemisty
25
,
6978
(
1986
).
[12]
H. R.
Marsden
,
I.
Tomatsu
, and
A.
Kros
,
Chem. Soc. Rev.
40
,
1572
(
2011
).
[13]
D. K.
Struck
and
D.
Hoekstra
,
Biochemistry
20
,
4093
(
1981
).
[14]
T.
Stegmann
,
P.
Schoen
,
R.
Bron
,
J.
Wey
,
I.
Bartoldus
,
A.
Ortiz
,
J. L.
Nieva
, and
J.
Wilschut
,
Biochem.
32
,
11330
(
1993
).
[15]
D.
Hoekstra
,
T. D.
Boer
,
K.
Klappe
, and
J.
Wilschut
,
Biochemistry
23
,
5675
(
1984
).
[16]
P. L.
Yeagle
,
The Membranes of Cells
, 3rd Edn.,
San Diego/Cambridge/Oxford
:
Academic Press
, (
2016
).
[17]
W.
Wickner
and
R.
Schekman
,
Nat. Struct. Mol. Biol.
15
,
658
(
2008
).
[18]
X. D.
Zhu
,
H.
Suhr
, and
Y. R.
Shen
,
Phys. Rev. B
35
,
3047
(
1987
).
[19]
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
,
Phys. Rev. B
59
,
12633
(
1999
).
[20]
J.
Wang
,
C.
Chen
,
S. M.
Buck
, and
Z.
Chen
,
J. Phys. Chem. B
105
,
12118
(
2001
).
[21]
F.
Wei
,
Y. Y.
Xu
,
Y.
Guo
,
S. L.
Liu
, and
H. F.
Wang
,
Chin. J. Chem. Phys.
22
,
592
(
2009
).
[22]
H. F.
Wang
,
L.
Velarde
,
W.
Gan
, and
L.
Fu
,
Annu. Rev. Phys. Chem.
66
,
189
(
2015
).
[23]
X.
Zhang
and
Z.
Chen
,
Langmuir
30
,
4933
(
2014
).
[24]
T.
Weidner
,
N. F.
Breen
,
K.
Li
,
G. P.
Drobny
, and
D. G.
Castner
,
Proc. Nat. Acad. Sci. USA
107
,
13288
(
2010
).
[25]
X.
Han
,
Y.
Liu
,
F. G.
Wu
,
J.
Jansensky
,
T.
Kim
,
Z.
Wang
,
C. L.
Brooks
,
J.
Wu
,
C.
Xi
,
C. M.
Mello
, and Z.
Chen, J. Phys. Chem. B.
118
,
2904
(
2014
).
[26]
F.
Wei
,
W. X.
Xia
,
Z. J.
Hu
,
W. H.
Li
,
J. Y.
Zhang
, and
W. Q.
Zheng
,
Chin. J. Chem. Phys.
29
,
171
(
2016
).
[27]
J.
Tan
,
Y.
Luo
, and
S.
Ye
,
Chin. J. Chem. Phys.
30
,
671
(
2017
).
[28]
X.
Zhang
,
J. N.
Myers
,
H.
Huang
,
H.
Shobha
,
Z.
Chen
, and
A.
Grill
,
J. Appl. Phys.
119
,
084101
(
2016
).
[29]
B.
Ding
,
J.
Jasonsky
,
Y.
Li
, and
Z.
Chen
,
Acc. Chem. Res.
49
,
1149
(
2016
).
[30]
Y.
Ma
,
J.
Hou
,
W.
Hao
,
J.
Liu
,
L.
Meng
, and
Z.
Lu
,
Phys. Chem. Chem. Phys.
20
,
17199
(
2018
).
[31]
T.
Luo
,
R.
Zhang
,
X.
Peng
,
X.
Liu
,
C.
Zhou
,
X.
Yang
, and
Z.
Ren
,
Surf. Sci.
689
,
121459
(
2019
).
[32]
S.
Wang
,
W.
Sun
,
S.
Guo
,
X.
Liu
, and
X.
Han
,
Langmuir
37
,
4441
(
2021
).
[33]
R.
Zhang
,
X.
Peng
,
Z.
Jiao
,
T.
Luo
,
C.
Zhou
,
X.
Yang
, and
Z.
Ren
,
J. Chem. Phys.
150
,
074702
(
2019
).
[34]
J.
Hou
,
X.
Zhang
, and
Z.
Lu
,
Chem. Phys.
536
,
110814
(
2020
).
[35]
L.
Zhang
,
J.
Tan
,
Q.
Pei
, and
S.
Ye
,
Chin. J. Chem. Phys.
33
,
532
(
2020
).
[36]
J.
Tan
,
J.
Zhang
,
Y.
Luo
, and
S.
Ye
,
J. Am. Chem. Soc.
141
,
1941
(
2019
).
[37]
B.
Ding
,
J. E.
Laaser
,
Y.
Liu
,
P.
Wang
,
M. T.
Zanni
, and
Z.
Chen
,
J. Phys. Chem. B
117
,
14625b
(
2013
).
[38]
J.
Tan
,
C.
Li
,
J.
Zhang
, and
S.
Ye
,
Chin. J. Chem. Phys.
31
,
523
(
2018
).
[39]
L. L.
Olenick
,
J. M.
Troiano
,
N.
Smolentsev
,
P. E.
Ohno
,
S.
Roke
, and
F. M.
Geiger
,
J. Phys. Chem. B
122
,
5049
(
2018
).
[40]
M.
Dogangun
,
P. E.
Ohno
,
D.
Liang
,
A. C.
McGeachy
,
A. G.
,
N.
Dalchand
,
T.
Li
,
Q.
Cui
, and
F. M.
Geiger
,
J. Phys. Chem. B
122
,
4870
(
2018
).
[41]
X.
Chen
,
J.
Wang
,
A. P.
Boughton
,
C. B.
Kristalyn
, and
Z.
Chen
,
J. Am. Chem. Soc.
129
,
1420
(
2007
).
[42]
X.
Chen
and
Z.
Chen
,
Biochim. Biophys. Acta-Biomembr.
1758
,
1257
(
2006
).
[43]
X.
Chen
,
A. P.
Boughton
,
J. J. G.
Tesmer
, and
Z.
Chen
,
J. Am. Chem. Soc.
129
,
12658
(
2007
).
[44]
P.
Yang
,
F. G.
Wu
, and
Z.
Chen
,
J. Phys. Chem. C
117
,
17039
(
2013
).
[45]
B.
Li
,
X.
Lu
,
X.
Han
,
F. G.
Wu
,
J. N.
Myers
, and
Z.
Chen
,
J. Phys. Chem. C
118
,
28631
(
2014
).
[46]
G.
Ma
and
H. C.
Allen
,
Langmuir
22
,
5341
(
2006
).
[47]
X.
Chen
and
H. C.
Allen
,
J. Phys. Chem. A
113
,
12655
(
2009
).
[48]
P.
Yang
,
K. T.
Homan
,
Y.
Li
,
O.
Cruz-Rodriguez
,
J. J. G.
Tesmer
, and
Z.
Chen
,
Biochemistry
55
,
2841
(
2016
).
[49]
A. P.
Boughton
,
P.
Yang
,
V. M.
Tesmer
,
B.
Ding
,
J. J. G.
Tesmer
, and
Z.
Chen
,
Proc. Nat. Acad. Sci. USA
108
,
667
(
2011
).
[50]
B.
Li
,
X.
Li
,
Y. H.
Ma
,
X.
Han
,
F.
Wu
,
Z.
Guo
,
Z.
Chen
, and
X.
Lu
,
Langmuir
32
,
7086
(
2016
).
[51]
J.
Zhang
,
W.
Yang
,
J.
Tan
, and
S.
Ye
,
Phys. Chem. Chem. Phys.
20
,
5657
(
2018
).
[52]
L. B.
Dreier
,
M.
Bonn
, and
E. H. G.
Backus
,
J. Phys. Chem. B
123
,
1085
(
2019
).
[53]
N. N.
Casillas-Ituarte
,
X.
Chen
,
H.
Castada
, and
H. C.
Allen
,
J. Phys. Chem. B
114
,
9485
(
2010
).
[54]
X.
Chen
,
W.
Hua
,
Z.
Huang
, and
H. C.
Allen
,
J. Am. Chem. Soc.
132
,
11336
(
2010
).
[55]
Y. H.
Ma
,
B.
Li
,
J.
Yang
,
X.
Han
,
Z.
Chen
, and
X.
Lu
,
J. Phys. Chem. C
123
,
17899
(
2019
).
[56]
V.
Volkov
and
M.
Bonn
,
J. Phys. Chem. B
117
,
15527
(
2013
).
[57]
W.
Wang
,
J.
Tan
, and
S.
Ye
,
J. Phys. Chem. B
124
,
5169
(
2020
).
[58]
D.
Papahadjopoulos
,
S.
Nir
, and
N. t.
Düzgnes
,
J. Bioenerg. Biomembr.
22
,
157
(
1990
).
[59]
R.
Leventis
,
J.
Gagne
,
N.
Fuller
,
R.
Rand
, and
J.
Silvius
,
Biochemistry
25
,
6978
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.