Vacuum ultraviolet photodissociation dynamics of N2O+hvN2(X1Σg+)+O(1S0) in the short wavelength tail of D1Σ+ band has been investigated using the time-sliced velocity-mapped ion imaging technique by probing the images of the O(1S0) photoproducts at a set of photolysis wavelengths including 121.47 nm, 122.17 nm, 123.25 nm and 123.95 nm. The product total kinetic energy release distributions, vibrational state distributions of the N2(X1Σg+) photofragments and angular anisotropy parameters have been obtained by analyzing the raw O(1S0) images. It is noted that additional vibrationally excited photoproducts (3≤v≤8) with a Boltzmann-like feature start to appear except the non-statistical component as the photolysis wavelength decreases to 123.25 nm, and the corresponding populations become more pronounced with decreasing of the photolysis wave-length. Furthermore, the vibrational state specific anisotropy parameter β at each photolysis wavelength exhibits a drastic fluctuation near β=1.75 at v<8, and decreases to a minimum as the vibrational quantum number further increases. While the overall anisotropy parameter β for the N2(X1Σg+)+O(1S0) channel presents a roughly monotonical increase from 1.63 at 121.47 nm to 1.95 at 123.95 nm. The experimental observations suggest that there is at least one fast nonadiabatic pathway from initially prepared D1Σ+ state to the dissociative state with bent geometry dominating to generate the additional vibrational structures at high photoexcitation energies.

[1]
Y. L.
Yung
,
W. C.
Wang
, and
A. A.
Lacis
,
Geophys. Res. Lett.
3
,
619
(
1976
).
[2]
P. J.
Crutzen
,
Q. J. R Meteorol. Soc.
96
,
320
(
1970
).
[3]
M. B.
McElroy
and
J. C.
McConnnell
,
J. Atmos. Sci.
28
,
1095
(
1971
).
[4]
G. S.
Selwyn
and
H. S.
Johnston
,
J. Chem. Phys.
74
,
3791
(
1981
).
[5]
K.
Yoshino
,
D. E.
Freeman
, and
W. H.
Parkinson
,
Planet. Space Sci.
32
,
1219
(
1984
).
[6]
K. F.
Preston
and
R. F.
Barr
,
J. Chem. Phys.
54
,
3347
(
1971
).
[7]
P.
Felder
,
B. M.
Haas
, and
J. R.
Huber
,
Chem. Phys. Lett.
186
,
177
(
1991
).
[8]
N.
Shafer
,
K.
Tonokura
,
Y.
Matsumi
,
S.
Tasaki
, and
M.
Kawasaki
,
J. Chem. Phys.
95
,
6218
(
1991
).
[9]
L. L.
Springsteen
,
S.
Satyapal
,
Y.
Matsumi
,
L. M.
Dobeck
, and
P. L.
Houston
,
J. Phys. Chem.
97
,
7239
(
1993
).
[10]
T. F.
Hanisco
and
A. C.
Kummel
,
J. Phys. Chem.
97
,
7242
(
1993
).
[11]
T.
Suzuki
,
H.
Katayanagi
,
Y.
Mo
, and
K.
Tonokura
,
Chem. Phys. Lett.
256
,
90
(
1996
).
[12]
M.
Ahmed
,
E. R.
Wouters
,
D. S.
Peterka
,
O. S.
Vasyutinskii
, and
A. G.
Suits
,
Faraday Discuss.
113
,
425
(
1999
).
[13]
D. W.
Neyer
,
A. J. R.
Heck
,
D. W.
Chandler
,
J. M.
Teule
, and
M. H. M.
Janssen
,
J. Phys. Chem. A
103
,
10388
(
1999
).
[14]
D. W.
Neyer
,
A. J. R.
Heck
, and
D. W.
Chandler
,
J. Chem. Phys.
110
,
3411
(
1999
).
[15]
J. M.
Teule
,
G. C.
Groenenboom
,
D. W.
Neyer
,
D. W.
Chandler
, and
M. H. M.
Janssen
,
Chem. Phys. Lett.
320
,
177
(
2000
).
[16]
A. M.
Rijs
,
E. H.
Backus
,
C. A.
de Lange
,
M. H. M.
Janssen
,
K.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
114
,
9413
(
2001
).
[17]
T.
Nishide
and
T.
Suzuki
,
J. Phys. Chem. A
108
,
7863
(
2004
).
[18]
L. C.
Lee
and
M.
Suto
,
J. Chem. Phys.
80
,
4718
(
1984
).
[19]
J. B.
Nee
,
J. C.
Yang
,
P. C.
Lee
,
X. Y.
Wang
, and
C. T.
Kuo
,
Chin. J. Phys.
37
,
172
(
1999
).
[20]
C.
Zhen
,
Y. H.
Hu
,
X. G.
Zhou
, and
S. L.
Liu
, Chin.
J. Chem. Phys.
24
,
267
(
2011
).
[21]
G.
Black
,
R. L.
Sharpless
,
T. G.
Slanger
, and
D. C.
Lorents
,
J. Chem. Phys.
62
,
4266
(
1975
).
[22]
R.
Gilpin
and
K. H.
Welge
,
J. Chem. Phys.
55
,
975
(
1971
).
[23]
E. J.
Stone
,
G. M.
Lawrence
, and
C. E.
Fairchild
,
J. Chem. Phys.
65
,
5083
(
1976
).
[24]
H. M.
Lambert
,
E. W.
Davis
,
O.
Tokel
,
A. A.
Dixit
, and
P. L.
Houston
,
J. Chem. Phys.
122
,
174304
(
2005
).
[25]
S. R.
Yu
,
D. F.
Yuan
,
W. T.
Chen
,
X. M.
Yang
, and
X. A.
Wang
,
J. Phys. Chem. A
119
,
8090
(
2015
).
[26]
D. F.
Yuan
,
S. R.
Yu
,
T.
Xie
,
W. T.
Chen
,
S. W.
Wang
,
Y. X.
Tan
,
T.
Wang
,
K. J.
Yuan
,
X. M.
Yang
, and
X. A.
Wang
,
J. Phys. Chem. A
122
,
2663
(
2018
).
[27]
S. R.
Yu
,
D. F.
Yuan
,
W. T.
Chen
,
T.
Xie
,
S. W.
Wang
,
X. M.
Yang
, and
X. A.
Wang
,
Chin. J. Chem. Phys.
29
,
135
(
2016
).
[28]
S. R.
Yu
,
D. F.
Yuan
,
W. T.
Chen
,
T.
Xie
,
J. M.
Zhou
,
T.
Wang
,
Z. C.
Chen
,
K. J.
Yuan
,
X. M.
Yang
, and
X. A.
Wang
,
J. Chem. Phys.
149
,
104309
(
2018
).
[29]
S. R.
Yu
,
D. F.
Yuan
,
W. T.
Chen
,
J. M.
Zhou
,
X. M.
Yang
, and
X. A.
Wang
,
J. Chem. Phys.
151
,
214306
(
2019
).
[30]
J. M.
Zhou
,
Z. J.
Luo
,
J. Y.
Yang
,
Y.
Chang
,
Z. G.
Zhang
,
Y.
Yu
,
Q. M.
Li
,
G. K.
Cheng
,
Z. C.
Chen
,
Z. G.
He
,
L.
Che
,
S. R.
Yu
,
G. R.
Wu
,
K. J.
Yuan
, and
X. M.
Yang
,
Phys. Chem. Chem. Phys.
22
,
6260
(
2020
).
[31]
C. N.
Ling
,
H.
Liao
,
D. F.
Yuan
,
W. T.
Chen
,
Y. X.
Tan
,
W. T.
Li
,
S. R.
Yu
,
X. M.
Yang
, and
X. A.
Wang
,
Phys. Chem. Chem. Phys.
23
,
5809
(
2021
).
[32]
D. G.
Hopper
,
J. Chem. Phys.
80
,
4290
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.