The laser-induced fluorescence excitation spectra of uranium monofluoride have been recorded in the range of 17000-19000 cm−1 using two-dimensional spectroscopy. High resolution dispersed fluorescence spectra and time-resolved fluorescence spectroscopy were also recorded. Three rotationally resolved bands were intensively analyzed, and all bands were found to be derived from the ground state X(1)4.5 with a rotational constant of 0.23421 cm−1. The low-lying electronic states were observed near 435 and 651 cm−1 in the dispersed fluorescence spectra, which were assigned as Ω′ = 3.5 and 2.5, respectively. The vibrational constants for the X(1)4.5 and X(1)3.5 states were calculated. The branching ratios of the dispersed fluorescence spectra for the [18.62]3.5, [17.72]4.5, and [17.65]4.5 states were reported. Radiative lifetime of 332(9) ns, 825(49) ns, and 433(15) ns for the [18.62]3.5, [17.72]4.5, and [17.65]4.5 states were obtained by fitting the time-resolved fluorescence spectroscopy, respectively. Transition dipole moments were performed using the branching ratios and the radiative lifetimes.

[1]
D. A.
Pantazis
and
F.
Neese
,
J. Chem. Theory Comput.
7
,
677
(
2011
).
[2]
M.
Krauss
and
W. J.
Stevens
,
Mol. Phys.
101
,
125
(
2003
).
[3]
M. C.
Heaven
,
B. J.
Barker
, and
I. O.
Antonov
,
J. Phys. Chem. A
118
,
10867
(
2014
).
[4]
B. J.
Barker
,
I. O.
Antonov
, and
M. C.
Heaven
,
J. Mol. Spectrosc.
275
,
35
(
2012
).
[5]
R. A.
VanGundy
,
J. H.
Bartlett
,
M. C.
Heaven
,
S. R.
Battey
, and
K. A.
Peterson
,
J. Chem. Phys.
146
,
054307
(
2017
).
[6]
C. T.
Dewberry
,
K. C.
Etchison
, and
S. A.
Cooke
,
Phys. Chem. Chem. Phys.
9
,
4895
(
2007
).
[7]
V.
Goncharov
and
M. C.
Heaven
,
J. Chem. Phys.
124
,
064312
(
2006
).
[8]
R. D.
Hunt
,
C.
Thompson
,
P.
Hassanzadeh
, and
L.
Andrews
,
Inorg. Chem.
33
,
388
(
1994
).
[9]
V.
Goncharov
,
J.
Han
,
L. A.
Kaledin
, and
M. C.
Heaven
,
J. Chem. Phys.
122
,
204311
(
2005
).
[10]
J. H.
Bartlett
,
I. O.
Antonov
, and
M. C.
Heaven
,
J. Phys. Chem. A
117
,
12042
(
2013
).
[11]
S. R.
Battey
,
D. H.
Bross
,
K. A.
Peterson
,
T. D.
Persinger
,
R. A.
Vangundy
, and
M. C.
Heaven
,
J. Chem. Phys.
152
,
094302
(
2020
).
[12]
D. J.
Matthew
and
M. D.
Morse
,
J. Chem. Phys.
138
,
184303
(
2013
).
[13]
V.
Vetere
,
P.
Maldivi
,
B. O.
Roos
, and
C.
Adamo
,
J. Phys. Chem. A
113
,
14760
(
2009
).
[14]
I.
Kirker
and
N.
Kaltsoyannis
,
Dalt. Trans.
40
,
124
(
2011
).
[15]
A. C.
Tsipis
,
C. E.
Kefalidis
, and
C. A.
Tsipis
,
J. Am. Chem. Soc.
130
,
9144
(
2008
).
[16]
D. M.
King
,
F.
Tuna
,
E. J. L.
McInnes
,
J.
McMaster
,
W.
Lewis
,
A. J.
Blake
, and
S. T.
Liddle
,
Nat. Chem.
5
,
482
(
2013
).
[17]
D. H.
Bross
and
K. A.
Peterson
,
J. Chem. Phys.
143
,
184313
(
2015
).
[18]
W. L.
Li
,
H. S.
Hu
,
T.
Jian
,
G. V.
Lopez
,
J.
Su
,
J.
Li
, and
L. S.
Wang
,
J. Chem. Phys.
139
,
244303
(
2013
).
[19]
I. O.
Antonov
and
M. C.
Heaven
,
J. Phys. Chem. A
117
,
9684
(
2013
).
[20]
C.
Linton
,
A. G.
Adam
, and
T. C.
Steimle
,
J. Chem. Phys.
140
,
214305
(
2014
).
[21]
L. A.
Kaledin
and
M. C.
Heaven
,
J. Mol. Spectrosc.
185
,
1
(
1997
).
[22]
R.
Tyagi
,
Z.
Zhang
, and
R. M.
Pitzer
,
J. Phys. Chem. A
118
,
11758
(
2014
).
[23]
J. M.
Dyke
,
A. M.
Ellis
,
M.
Feher
, and
A.
Morris
,
Chem. Phys. Lett.
145
,
159
(
1988
).
[24]
S. J.
Riley
and
E. K.
Parks
,
Chem. Phys. Lett.
119
,
229
(
1985
).
[25]
J.
Czekner
,
G. V.
Lopez
, and
L. S.
Wang
,
J. Chem. Phys.
141
,
244302
(
2014
).
[26]
J.
Han
,
V.
Goncharov
,
L. A.
Kaledin
,
A. V.
Komissarov
, and
M. C.
Heaven
,
J. Chem. Phys.
120
,
5155
(
2004
).
[27]
S. D.
Gabelnick
,
G. T.
Reedy
, and
M. G.
Chasanov
,
J. Chem. Phys.
58
,
4468
(
1973
).
[28]
R. D.
Hunt
and
L.
Andrews
,
J. Chem. Phys.
98
,
3690
(
1993
).
[29]
G. C.
Allen
,
E. J.
Baerends
,
P.
Vernooijs
,
J. M.
Dyke
,
A. M.
Ellis
,
M.
Fehér
, and
A.
Morris
,
J. Chem. Phys.
89
,
5363
(
1988
).
[30]
M.
Krauss
and
W. J.
Stevens
,
J. Comput. Chem.
4
,
127
(
1983
).
[31]
D. G.
Fedorov
,
T.
Nakajima
, and
K.
Hirao
,
J. Chem. Phys.
118
,
4970
(
2003
).
[32]
E. T.
Mengesha
,
A. T.
Le
,
T. C.
Steimle
,
L.
Cheng
,
C.
Zhang
,
B. L.
Augenbraun
,
Z.
Lasner
, and
J.
Doyle
,
J. Phys. Chem. A
124
,
3135
(
2020
).
[33]
D. L.
Kokkin
,
T. C.
Steimle
, and
D.
Demille
,
Phys. Rev. A
90
,
062503
(
2014
).
[34]
X.
Bai
and
T. C.
Steimle
,
Astrophys. J.
889
,
147
(
2020
).
[35]
A. T.
Le
,
S. G.
Nakhate
,
D. T.
Nguyen
,
T. C.
Steimle
, and
M. C.
Heaven
,
J. Chem. Phys.
150
,
144304
(
2019
).
[36]
J. R.
Gascooke
,
U. N.
Alexander
, and
W. D.
Lawrance
,
J. Chem. Phys.
136
,
134309
(
2012
).
[37]
J. R.
Gascooke
,
U. N.
Alexander
, and
W. D.
Lawrance
,
J. Chem. Phys.
134
,
184301
(
2011
).
[38]
N. J.
Reilly
,
T. W.
Schmidt
, and
S. H.
Kable
,
J. Phys. Chem. A
110
,
12355
(
2006
).
[39]
J. R.
Gascooke
and
W. D.
Lawrance
,
Chem. Phys. Lett.
555
,
38
(
2013
).
[40]
A.
Sanli
,
X.
Pan
,
D. S.
Beecher
,
S.
Magnier
,
A. M.
Lyyra
, and
E. H.
Ahmed
,
J. Mol. Spectrosc.
355
,
1
(
2019
).
[41]
P. K.
Mandal
,
R. C.
Das
,
A. U.
Seema
,
A. C.
Sahoo
,
M. L.
Shah
,
A. K.
Pulhani
,
K. G.
Manohar
, and
V.
Dev
,
Appl. Phys. B Lasers Opt.
116
,
407
(
2014
).
[42]
J. L.
Bouchard
,
T.
Steimle
,
D. L.
Kokkin
,
D. J.
Sharfi
, and
R. J.
Mawhorter
,
J. Mol. Spectrosc.
325
,
1
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.