Cr2O3 has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate, e.g., methanol, from syngas. By combining density functional theory calculations and microkinetic modeling, we computationally studied the surface structures and catalytic activities of bare Cr2O3 (001) and (012) surfaces, and two reduced (012) surfaces covered with dissociative hydrogens or oxygen vacancies. The reduction of (001) surface is much more difficult than that of (012) surface. The stepwise or the concerted reaction pathways were explored for the syngas to methanol conversion, and the hydrogenation of CO or CHO is identified as rate-determining step. Microkinetic modeling reveals that (001) surface is inactive for the reaction, and the rates of both reduced (012) surfaces (25−28 s−1) are about five times higher than bare (012) surface (4.3 s−1) at 673 K. These theoretical results highlight the importance of surface reducibility on the reaction and may provide some implications on the design of individual component in bifunctional catalysis.

[1]
X.
Pan
,
F.
Jiao
,
D.
Miao
, and
X.
Bao
,
Chem. Rev.
121
,
6588
(
2021
).
[2]
A. Y.
Khodakov
,
W.
Chu
, and
P.
Fongarland
,
Chem. Rev.
107
,
1692
(
2007
).
[3]
W.
Zhou
,
K.
Cheng
,
J.
Kang
,
C.
Zhou
,
V.
Subramanian
,
Q.
Zhang
, and
Y.
Wang
,
Catal. Sci. Technol.
48
,
3193
(
2019
).
[4]
R. A.
Friedel
and
R. B.
Anderson
,
J. Am. Chem. Soc.
72
,
1212
(
2002
).
[5]
C. D.
Chang
and
A. J.
Silvestri
,
J. Catal.
47
,
249
(
1977
).
[6]
P.
Tian
,
Y.
Wei
,
M.
Ye
, and
Z.
Liu
,
ACS Catal.
5
,
1922
(
2015
).
[7]
C.
Qingling
,
Y.
Weimin
, and
T.
Jiawei
,
Chin. J. Catal.
34
,
217
(
2013
).
[8]
F.
Jiao
,
J.
Li
,
X.
Pan
,
J.
Xiao
,
H.
Li
,
H.
Ma
,
M.
Wei
,
Y.
Pan
,
Z.
Zhou
,
M.
Li
,
S.
Miao
,
J.
Li
,
Y.
Zhu
,
D.
Xiao
,
T.
He
,
J.
Yang
,
F.
Qi
,
Q.
Fu
, and
X.
Bao
,
Science
351
,
1065
(
2016
).
[9]
K.
Cheng
,
B.
Gu
,
X.
Liu
,
J.
Kang
,
Q.
Zhang
, and
Y.
Wang
,
Angew. Chem. Int.Ed.
55
,
4725
(
2016
).
[10]
F.
Jiao
,
X.
Pan
,
K.
Gong
,
Y.
Chen
,
G.
Li
, and
X.
Bao
,
Angew. Chem. Int. Ed.
57
,
4692
(
2018
).
[11]
Y.
Zhu
,
X.
Pan
,
F.
Jiao
,
J.
Li
,
J.
Yang
,
M.
Ding
,
Y.
Han
,
Z.
Liu
, and
X.
Bao
,
ACS Catal.
7
,
2800
(
2017
).
[12]
J.
Yang
,
X.
Pan
,
F.
Jiao
,
J.
Li
, and
X.
Bao
,
Chem. Commun.
53
,
11146
(
2017
).
[13]
C. M.
Wang
,
Y. D.
Wang
, and
Z. K.
Xie
,
Catal. Sci. Technol.
6
,
6644
(
2016
).
[14]
W. D.
Hu
,
Y. D.
Wang
, and
C. M.
Wang
,
Chem. Ind. Eng. Prog.
(
2022
). DOI:
[15]
Z. X.
Zhang
,
P. Y.
Bi
,
P. W.
Jiang
, and
Q. X.
Li
,
Chin. J. Chem. Phys.
27
,
573
(
2014
).
[16]
N.
Li
,
F.
Jiao
,
X.
Pan
,
Y.
Ding
,
J.
Feng
, and
X.
Bao
,
ACS Catal.
9
,
960
(
2018
).
[17]
S.
Tian
,
L.
Tan
,
Y.
Wu
,
Y.
Kou
,
H.
Xie
,
N.
Tsubaki
, and
Y.
Tan
,
Appl. Catal. A
536
,
57
(
2017
).
[18]
L.
Ren
,
J.
Zhang
,
B.
Wang
,
H.
Xu
,
J.
Jiang
,
Y.
Guan
, and
P.
Wu
,
Fuel
307
,
121916
(
2022
).
[19]
Y.
Ni
,
Y.
Liu
,
Z.
Chen
,
M.
Yang
,
H.
Liu
,
Y.
He
,
Y.
Fu
,
W.
Zhu
, and
Z.
Liu
,
ACS Catal.
9
,
1026
(
2018
).
[20]
M.
Wang
,
J.
Kang
,
X.
Xiong
,
F.
Zhang
,
K.
Cheng
,
Q.
Zhang
, and
Y.
Wang
,
Catal. Today
371
,
85
(
2021
).
[21]
C.
Liu
,
J.
Su
,
S.
Liu
,
H.
Zhou
,
X.
Yuan
,
Y.
Ye
,
Y.
Wang
,
W.
Jiao
,
L.
Zhang
,
Y.
Lu
,
Y.
Wang
,
H.
He
, and
Z.
Xie
,
ACS Catal.
10
,
15227
(
2020
).
[22]
C.
Liu
,
S.
Liu
,
H.
Zhou
,
J.
Su
,
W.
Jiao
,
L.
Zhang
,
Y.
Wang
,
H.
He
, and
Z.
Xie
,
Appl. Catal. A
585
,
117206
(
2019
).
[23]
S.
Wang
,
L.
Zhang
,
P.
Wang
,
X.
Liu
,
Y.
Chen
,
Z.
Qin
,
M.
Dong
,
J.
Wang
,
L.
He
,
U.
Olsbye
, and
W.
Fan
,
Chemistry
8
,
1
(
2022
).
[24]
Y.
Wang
,
G.
Wang
,
L. I.
van der Wal
,
K.
Cheng
,
Q.
Zhang
,
K. P.
de Jong
, and
Y.
Wang
,
Angew. Chem. Int. Ed.
60
,
17735
(
2021
).
[25]
C.
Liu
,
J.
Su
,
Y.
Xiao
,
J.
Zhou
,
S.
Liu
,
H.
Zhou
,
Y.
Ye
,
Y.
Lu
,
Y.
Zhang
,
W.
Jiao
,
L.
Zhang
,
Y.
Wang
,
C.
Wang
,
X.
Zheng
, and
Z.
Xie
,
Chem. Catal.
1
,
896
(
2021
).
[26]
J.
Su
,
D.
Wang
,
Y.
Wang
,
H.
Zhou
,
C.
Liu
,
S.
Liu
,
C.
Wang
,
W.
Yang
,
Z.
Xie
, and
M.
He
,
ChemCatChem
10
,
1536
(
2018
).
[27]
H.
Song
,
C.
Watermann
,
D.
Laudenschleger
,
F.
Yang
,
H.
Ruland
, and
M.
Muhler
,
Mol. Catal.
451
,
76
(
2018
).
[28]
Y.
Wang
,
L.
Tan
,
M.
Tan
,
P.
Zhang
,
Y.
Fang
,
Y.
Yoneyama
,
G.
Yang
, and
N.
Tsubaki
,
ACS Catal.
9
,
895
(
2019
).
[29]
S.
De Rossi
,
G.
Ferraris
,
S.
Fremiotti
,
E.
Garrone
,
G.
Ghiotti
,
M. C.
Campa
, and
V.
Indovina
,
J. Catal.
148
,
36
(
1994
).
[30]
M.
Cherian
,
M. S.
Rao
,
A. M.
Hirt
,
I. E.
Wachs
, and
G.
Deo
,
J. Catal.
211
,
482
(
2002
).
[31]
Y. J.
Tu
,
Y. W.
Chen
, and
C.
Li
,
J. Mol. Catal.
89
,
179
(
1994
).
[32]
P. H.
Finger
,
T. A.
Osmari
,
M. S.
Costa
,
J. M. C.
Bueno
, and
J. M. R.
Gallo
,
Appl. Catal. A
589
,
117236
(
2020
).
[33]
W.
Lu
,
X.
Zhao
,
H.
Wang
, and
W.
Xiao
,
Chin. J. Catal.
21
,
423
(
2000
).
[34]
R.
Ma
,
P.
Hu
,
L.
Jin
,
Y.
Wang
,
J.
Lu
, and
M.
Luo
,
Catal. Today
175
,
598
(
2011
).
[35]
H.
Rotter
,
M. V.
Landau
,
M.
Carrera
,
D.
Goldfarb
, and
M.
Herskowitz
,
Appl. Catal. B
47
,
111
(
2004
).
[36]
A.
Wang
,
B.
Lin
,
H.
Zhang
,
M. H.
Engelhard
,
Y.
Guo
,
G.
Lu
,
C. H. F.
Peden
, and
F.
Gao
,
Catal. Sci. Technol.
7
,
2362
(
2017
).
[37]
R. G.
Herman
,
Stud. Surf. Sci. Catal.
64
,
265
(
1991
).
[38]
W. S.
Epling
,
G. B.
Hoflund
,
W. M.
Hart
, and
D. M.
Minahan
,
J. Catal.
169
,
438
(
1997
).
[39]
M. C. J.
Bradford
,
M. V.
Konduru
, and
D. X.
Fuentes
,
Fuel Process. Technol.
83
,
11
(
2003
).
[40]
B. T.
Sone
,
E.
Manikandan
,
A.
Gurib-Fakim
, and
M.
Maaza
,
Green Chem. Lett. Rev.
9
,
85
(
2016
).
[41]
K.
Jiao
,
B.
Zhang
,
B.
Yue
,
Y.
Ren
,
S.
Liu
,
S.
Yan
,
C.
Dickinson
,
W.
Zhou
, and
H.
He
,
Chem. Commun.
45
,
5618
(
2005
).
[42]
W. D.
Hu
,
C. M.
Wang
,
Y. D.
Wang
,
J.
Ke
,
G.
Yang
,
Y. J.
Du
, and
W. M.
Yang
,
Appl. Surf. Sci.
569
,
151064
(
2021
).
[43]
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
[44]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
[45]
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
[46]
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
[47]
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
[48]
J.
Jin
,
N.
Sun
,
W.
Hu
,
H.
Yuan
,
H.
Wang
, and
P.
Hu
,
ACS Catal.
8
,
5415
(
2018
).
[49]
F.
Lebreau
,
M. M.
Islam
,
B.
Diawara
, and
P.
Marcus
,
J. Phys. Chem. C
118
,
18133
(
2014
).
[50]
A.
Rohrbach
,
J.
Hafner
, and
G.
Kresse
,
Phys. Rev. B
70
,
125426
(
2004
).
[51]
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
[52]
A. J.
Medford
,
C.
Shi
,
M. J.
Hoffmann
,
A. C.
Lausche
,
S. R.
Fitzgibbon
,
T.
Bligaard
, and
J. K.
Nørskov
,
Catal. Lett.
145
,
794
(
2015
).
[53]
R. R.
John
,
CRC Handbook of Chemistry and Physics
, 99th Edn.,
Boca Raton
:
CRC Press
(
2018
).
[54]
C. T.
Campbell
,
J. Catal.
204
,
520
(
2001
).
[55]
C.
Stegelmann
,
A.
Andreasen
, and
C. T.
Campbell
,
J. Am. Chem. Soc.
131
,
8077
(
2009
).
[56]
R.
Dronskowski
and
P. E.
Bloechl
,
J. Phys. Chem.
97
,
8617
(
1993
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.