The boom in ultra-thin electronic devices and the growing need for humanization greatly facilitated the development of wearable flexible micro-devices. But the technology to deposit electrode material on flexible substrate is still in its infancy. Herein, the flexible symmetric micro-supercapacitors made of carbon nanotubes (CNTs) on commercial printing paper as electrode materials were fabricated by combining tetrahedral preparator auxiliary coating method and laser-cutting interdigital configuration technique on a large scale. The electrochemical performance of the obtained micro-supercapacitors can be controlled and tuned by simple choosing different models of tetrahedral preparatory to obtain CNTs film of different thicknesses. As expected, the micro-supercapacitor based on CNTs film can deliver an areal capacitance up to 4.56 mF/cm2 at current of 0.02 mA. Even if, micro-supercapacitor undergoes continuous 10000 cycles, the performance of device can still remain nearly 100%. The as-demonstrated tetrahedral preparator auxiliary coating method and laser-cutting interdigital configuration technique provide new perspective for preparing microelectronics in an economical way. The paper electrode appended by CNTs achieves steerable areal capacitance, showing broad application prospect in fabricating asymmetric micro-supercapacitor with flexible planar configurations in the future.

[1]
M. A.
Bavioa
,
G. G.
Acosta
,
T.
Kessler
, and
A.
Visintin
,
Energy
130
,
22
(
2017
).
[2]
Z. Q.
Niu
,
L.
Zhang
,
L. L.
Liu
,
B.
Zhu
,
H. B.
Dong
, and
X. D.
Chen
,
Adv. Mater.
25
,
4035
(
2013
).
[3]
J. Y.
Song
,
S.
Duan
,
X.
Chen
,
X. J.
Li
,
B. C.
Yang
, and
X. B.
Li
,
Chin. Phys. Lett.
37
,
076203
(
2020
).
[4]
K.
Tang
,
C. Z.
Yuan
,
Y.
Xiong
,
H. B.
Hu
, and
M. Z.
Wu
,
Appl. Catal. B
260
,
118209
(
2020
).
[5]
T. T.
Jiang
,
H. B.
Hu
,
F. C.
Lei
,
J. J.
Hu
,
M. Z.
Wu
, and
D.
Ho
,
ACS Appl. Mater. Interfaces
12
,
38031
(
2020
).
[6]
D.
Pech
,
M.
Brunet
,
H.
Durou
,
P. H.
Huang
,
V.
Mochalin
,
Y.
Gogotsi
,
P. L.
Taberna
, and
P.
Simon
,
Nat. Nanotechnol.
5
,
651
(
2010
).
[7]
B.
Liu
,
B.
Liu
,
Q. F.
Wang
,
X. F.
Wang
,
Q. Y.
Xiang
,
D.
Chen
, and
G. Z.
Shen
,
ACS Appl. Mater. Interfaces
5
,
10011
(
2013
).
[8]
B.
Wang
,
J.
Park
,
D.
Su
,
C. Y.
Wang
,
H.
Ahn
, and
G. X.
Wang
,
J. Mater. Chem.
22
,
15750
(
2012
).
[9]
D. Y.
Zhang
,
Y. H.
Zhang
,
X. W.
Li
,
Y. S.
Luo
,
H. W.
Huang
,
J. P.
Wang
, and
P. K.
Chu
,
J. Mater. Chem. A
4
,
568
(
2016
).
[10]
Y. D.
Wu
,
H. B.
Hu
,
C. Z.
Yuan
, and
M. Z.
Wu
,
Nano Energy
74
,
104812
(
2020
).
[11]
S. Q.
Jiao
,
A. G.
Zhou
,
M. Z.
Wu
, and
H. B.
Hu
,
Adv. Sci.
6
,
1900529
(
2019
).
[12]
M.
Beidaghi
and
C. L.
Wang
,
Adv. Funct. Mater.
22
,
4501
(
2012
).
[13]
H. B.
Hu
,
Z. B.
Pei
, and
C. H.
Ye
,
Energy Storage Mater.
1
,
82
(
2015
).
[14]
J.
Lin
,
C. G.
Zhang
,
Z.
Yan
,
Y.
Zhu
,
Z. W.
Peng
,
R. H.
Hauge
,
D.
Natelson
, and
J. M.
Tour
,
Nano Lett.
13
,
72
(
2013
).
[15]
L.
Peng
,
X.
Peng
,
B.
Liu
,
C. Z.
Wu
,
Y.
Xie
, and
G. H.
Yu
,
Nano Lett.
13
,
2151
(
2013
).
[16]
N.
Kurra
,
B.
Ahmed
,
Y.
Gogotsi
, and
H. N.
Alshareef
,
Adv. Energy Mater.
6
,
1601372
(
2016
).
[17]
L. B.
Hu
,
J. W.
Choi
,
Y.
Yang
,
S.
Jeong
,
F. L.
Mantia
,
L. F.
Cui
, and
Y.
Cui
,
Proc. Natl. Acad. Sci. USA
106
,
21490
(
2009
).
[18]
C. C.
Xiang
,
M.
Li
,
M. J.
Zhi
,
A.
Manivannan
, and
N. Q.
Wu
,
J. Power Sources
226
,
65
(
2013
).
[19]
S.
Sahoo
and
J. J.
Shim
,
ACS Sustainable Chem. Eng.
5
,
241
(
2017
).
[20]
S.
Abouali
,
M. A.
Garakani
,
B.
Zhang
,
Z. L.
Xu
,
E. K.
Heidari
,
J. Q.
Huang
,
J. Q.
Huang
, and
J. K.
Kim
,
ACS Appl. Mater. Interfaces
7
,
13503
(
2015
).
[21]
A. K.
Singh
,
D.
Sarkar
,
K.
Karmakar
,
K.
Mandal
, and
G. G.
Khan
,
ACS Appl. Mater. Interfaces
8
,
20786
(
2016
).
[22]
M.
Kaempgen
,
C. K.
Chan
,
J.
Ma
,
Y.
Cui
, and
G.
Gruner
,
Nano Lett.
9
,
1872
(
2009
).
[23]
E.
Frackowiak
,
V.
Khomenko
,
K.
Jurewicz
,
K.
Lota
, and
F.
Béguin
,
J. Power Sources
153
,
413
(
2006
).
[24]
Y. J.
Zheng
,
Z. Q.
Lin
,
W. J.
Chen
,
B. H.
Liang
,
H. W.
Du
,
R. L.
Yang
,
X. F.
He
,
Z. K.
Tang
, and
X. C.
Gui
,
J. Mater. Chem. A
5
,
5886
(
2017
).
[25]
C.
Choi
,
J. A.
Lee
,
A. Y.
Choi
,
Y. T.
Kim
,
X.
Lepŕ
,
M. D.
Lima
,
R. H.
Baughman
, and
S. J.
Kim
,
Adv. Mater.
26
,
2059
(
2014
).
[26]
M. G.
Kim
,
B. Y.
Lee
,
M. C.
Li
,
S.
Noda
,
C. S.
Kim
,
J.
Kim
,
W. J.
Song
,
S. W.
Lee
, and
O.
Brand
,
ACS Nano
14
,
5659
(
2020
).
[27]
L.
He
,
T. J.
Hong
,
Y.
Huang
,
B.
Xiong
,
X. F.
Hong
,
M.
Tahir
,
W. A.
Haider
, and
Y. L.
Han
,
Micromachines
10
,
307
(
2019
).
[28]
Y.
Pan
,
H.
Gao
,
M. Y.
Zhang
,
L.
Li
,
G. N.
Wang
, and
X. Y.
Shan
,
J. Colloid Interface Sci.
497
,
50
(
2017
).
[29]
J. X.
Zhao
,
C. W.
Li
,
Q. C.
Zhang
,
J.
Zhang
,
X. N.
Wang
,
Z. Y.
Lin
,
J. J.
Wang
,
W. B.
Lv
,
C. H.
Lu
,
C. P.
Wong
, and
Y. G.
Yao
,
J. Mater. Chem. A
5
,
6928
(
2017
).
[30]
D.
Ghosh
,
J.
Lim
,
R.
Narayan
, and
S. O.
Kim
,
ACS Appl. Mater. Interfaces
8
,
22253
(
2016
).
[31]
Q. H.
Wang
,
Y. X.
Zhu
,
J.
Xue
,
X. S.
Zhao
,
Z. P.
Guo
, and
C.
Wang
,
ACS Appl. Mater. Interfaces
8
,
17226
(
2016
).
[32]
L.
Huang
,
D. C.
Chen
,
Y.
Ding
,
S.
Feng
,
Z. L.
Wang
, and
M. L.
Liu
,
Nano Lett.
13
,
3135
(
2013
).
[33]
W.
Gao
,
N.
Singh
,
L.
Song
,
Z.
Liu
,
A. L. M.
Reddy
,
L. J.
Ci
,
R.
Vajtai
,
Q.
Zhang
,
B. Q.
Wei
, and
P. M.
Ajayan
,
Nat. Nanotechnol.
6
,
496
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.