Magnesium monofluoride (MgF) is proposed as an ideal candidate radical for direct laser cooling. Here, the rotationally resolved laser spectra of MgF for the A2Π−X2Σ+ electronic transition system were recorded by using laser induced fluorescence technique. The MgF radicals were produced by discharging SF6/Ar gas mixtures between the tips of two magnesium needles in a supersonic jet expansion. We recorded a total of 19 vibrational bands belonging to three sequences of Δv=0, ±1 in the region of 348-370 nm. Accurate spectroscopic constants for both X2Σ+ and A2Π states are determined from rotational analysis of the experimental spectra. Spectroscopic parameters, including the Franck-Condon factors (FCFs), are determined from the experimental results and the Rydberg-Klein-Rees (RKR) calculations. Significant discrepancies between the experimentally measured and RKR-calculated FCFs are found, indicating that the FCFs are nearly independent of the spin-orbit coupling in the A2Π state. Potential energy curves (PECs) and FCFs determined here provide necessary data for the theoretical simulation of the laser-cooling scheme of MgF.

[1]
N.
Balakrishnan
,
J. Chem. Phys.
145
,
150901
(
2016
).
[2]
L. D.
Carr
,
D.
DeMille
,
R. V.
Krems
, and
J.
Ye
,
New J. Phys.
11
,
055049
(
2009
).
[3]
B.
Drews
,
M.
Deiss
,
K.
Jachymski
,
Z.
Idziaszek
, and
J. H.
Denschlag
,
Nat. Commun.
8
,
14854
(
2017
).
[4]
P. D.
Gregory
,
M. D.
Frye
,
J. A.
Blackmore
,
E. M.
Bridge
,
R.
Sawant
,
J. M.
Hutson
, and
S. L.
Cornish
,
Nat. Commun.
10
,
3104
(
2019
).
[5]
S. A.
Moses
,
J. P.
Covey
,
M. T.
Miecnikowski
,
B.
Yan
,
B.
Gadway
,
J.
Ye
, and
D. S.
Jin
,
Science
350
,
659
(
2015
).
[6]
H.
Yang
,
D. C.
Zhang
,
L.
Liu
,
Y. X.
Liu
,
J.
Nan
,
B.
Zhao
, and
J. W.
Pan
,
Science
363
,
261
(
2019
).
[7]
X.
Ye
,
M.
Guo
,
M. L.
González-Martínez
,
G.
QáemÉer
, and
D.
Wang
,
Sci. Adv.
4
,
eaaq0083
(
2018
).
[8]
S.
Chu
,
L.
Hollberg
,
J. E.
Bjorkholm
,
A.
Cable
, and
A.
Ashkin
,
Phys. Rev. Lett.
55
,
48
(
1985
).
[9]
X.
Xu
,
T. H.
Loftus
,
J. W.
Dunn
,
C. H.
Greene
,
J. L.
Hall
,
A.
Gallagher
, and
J.
Ye
,
Phys. Rev. Lett.
90
,
193002
(
2003
).
[10]
P.
Hamilton
,
G.
Kim
,
T.
Joshi
,
B.
Mukherjee
,
D.
Tiarks
, and
H.
Müller
,
Phys. Rev. A.
89
,
023409
(
2014
).
[11]
G.
Unnikrishnan
,
M.
Gräbner
, and
H. C.
Nägerl
,
SciPost. Phys.
6
,
047
(
2019
).
[12]
M.
Landini
,
S.
Roy
,
L.
Carcagí
,
D.
Trypogeorgos
,
M.
Fattori
,
M.
Inguscio
, and
G.
Modugno
,
Phys. Rev. A
84
,
043432
(
2011
).
[13]
M. T.
Hummon
,
M.
Yeo
,
B. K.
Stuhl
,
A. L.
Collopy
,
Y.
Xia
, and
J.
Ye
,
Phys. Rev. Lett.
110
,
143001
(
2013
).
[14]
D.
McCarron
,
J. Phys. B: At. Mol. Opt. Phys.
51
,
212001
(
2018
).
[15]
I.
Kozyryev
,
L.
Baum
,
K.
Matsuda
,
B. L.
Augenbraun
,
L.
Anderegg
,
A. P.
Sedlack
, and
J. M.
Doyle
,
Phys. Rev. Lett.
118
,
173201
(
2017
).
[16]
N.
El-Kork
,
N. Abu
El Kher
,
F.
Korjieh
,
J. A.
Chtay
, and
M.
Korek
,
Spect. Chem. Acta A
177
,
170
(
2017
).
[17]
G. F. S.
Fernandes
,
M. A. P.
Pontes
,
U. J.
Faria
 Jr.
,
F. B. C.
Machado
, and
L. F. A.
Ferräo
,
Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
233
,
118210
(
2020
).
[18]
T. A.
Isaev
,
S.
Hoekstra
, and
R.
Berger
,
Phys. Rev. A
82
,
052521
(
2010
).
[19]
S.
Kang
,
Y.
Gao
,
F.
Kuang
,
T.
Gao
,
J.
Du
, and
G.
Jiang
,
Phys. Rev. A
91
,
042511
(
2015
).
[20]
I. C.
Lane
,
Phys. Chem. Chem. Phys.
14
,
15078
(
2012
).
[21]
R. F.
Barrow
and
J. R.
Beale
,
Proc. Phys. Soc.
91
,
483
(
1967
).
[22]
M. A.
Anderson
,
M. D.
Allen
, and
L. M.
Ziurys
,
Astrophys. J.
425
,
L53
(
1994
).
[23]
M. A.
Anderson
,
M. D.
Allen
, and
L. M.
Ziurys
,
J. Chem. Phys.
100
,
824
(
1994
).
[24]
S.
Xu
,
M.
Xia
,
R.
Gu
,
C.
Pei
,
Z.
Yang
,
Y.
Xia
, and
J.
Yin
,
J. Quant. Spectrosc. Radiat. Transfer.
236
,
106583
(
2019
).
[25]
S.
Xu
,
M.
Xia
,
Y.
Yin
,
R.
Gu
,
Y.
Xia
, and
J.
Yin
,
J. Chem. Phys.
150
,
084302
(
2019
).
[26]
B. E.
Barber
,
K. Q.
Zhang
,
B.
Guo
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
169
,
583
(
1995
).
[27]
D. P.
Dai
,
Y.
Xia
,
Y. N.
Yin
,
X. X.
Yang
,
Y. F.
Fang
,
X. J.
Li
, and
J. P.
Yin
,
Opt. Express
22
,
28645
(
2014
).
[28]
Y.
Yin
,
Y.
Xia
,
X.
Li
,
X.
Yang
,
S.
Xu
, and
J.
Yin
,
Appl. Phys. Express
8
,
092701
(
2015
).
[29]
I. D.
Singh
,
M. M.
Shukla
, and
R. C.
Maheshwari
,
J. Quant. Spectrosc. Radiat. Transfer.
9
,
533
(
1969
).
[30]
M.
Pelegrini
,
C. S.
Vivacqua
,
O.
Roberto-Neto
,
F. R.
Ornellas
, and
F. B. C.
Machado
,
Braz. J. Phys.
35
,
950
(
2005
).
[31]
D. L.
Wu
,
B.
Tan
,
J. Y.
Qin
,
H. J.
Wan
,
A. D.
Xie
,
B.
Yan
, and
D. J.
Ding
,
Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
150
,
499
(
2015
).
[32]
Q. S.
Yang
and
T.
Gao
,
Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
204
,
763
(
2018
).
[33]
L.
Xu
,
Y.
Yin
,
B.
Wei
,
Y.
Xia
, and
J.
Yin
,
Phys. Rev. A
93
,
013408
(
2016
).
[34]
K.
Yan
,
B.
Wei
,
Y.
Yin
,
S.
Xu
,
L.
Xu
,
M.
Xia
,
R.
Gu
,
Y.
Xia
, and
J.
Yin
,
New J. Phys.
22
,
033003
(
2020
).
[35]
D.
Zhang
,
Q.
Zhang
,
B.
Zhu
,
J.
Gu
,
B.
Suo
,
Y.
Chen
, and
D.
Zhao
,
J. Chem. Phys.
146
,
114303
(
2017
).
[36]
B.
Zhu
,
J.
Gu
,
C.
Yu
,
Z.
Xiao
,
Y.
Chen
, and
D.
Zhao
,
J. Phys. Chem. A
124
,
2972
(
2020
).
[37]
Q.
Zhang
,
D.
Zhang
,
B.
Zhu
,
J.
Gu
,
C.
Yu
,
Z.
Xiao
,
Y.
Chen
, and
D.
Zhao
,
J. Mol. Spectrosc.
372
,
111306
(
2020
).
[38]
Q.
Zhang
,
D.
Zhang
,
B.
Zhu
,
J.
Gu
,
D.
Zhao
, and
Y.
Chen
,
Chin. J. Chem. Phys.
33
,
75
(
2020
).
[39]
R. J.
Le Roy
,
J. Quant. Spectrosc. Radiat. Transfer.
186
,
158
(
2017
).
[40]
J. C.
López
V,
A. L.
Rivera
,
Y. F.
Smirnov
, and
A.
Frank
,
Int. J. Quantum Chem.
88
,
280
(
2002
).
[41]
R. J.
Le Roy
,
J. Quant. Spectrosc. Radiat. Transfer.
186
,
167
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.