Nanosystems play an important role in many applications. Due to their complexity, it is challenging to accurately characterize their structure and properties. An important means to reach such a goal is computational simulation, which is grounded on ab initio electronic structure calculations. Low scaling and accurate electronic-structure algorithms have been developed in recent years. Especially, the efficiency of hybrid density functional calculations for periodic systems has been significantly improved. With electronic structure information, simulation methods can be developed to directly obtain experimentally comparable data. For example, scanning tunneling microscopy images can be effectively simulated with advanced algorithms. When the system we are interested in is strongly coupled to environment, such as the Kondo effect, solving the hierarchical equations of motion turns out to be an effective way of computational characterization. Furthermore, the first principles simulation on the excited state dynamics rapidly emerges in recent years, and nonadiabatic molecular dynamics method plays an important role. For nanosystem involved chemical processes, such as graphene growth, multiscale simulation methods should be developed to characterize their atomic details. In this review, we review some recent progresses in methodology development for computational characterization of nanosystems. Advanced algorithms and software are essential for us to better understand of the nanoworld.

[1]
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
,
New York
:
Dover Publications
, (
1996
).
[2]
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
(
2012
).
[3]
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
[4]
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
[5]
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Angyán
,
J. Chem. Phys.
124
,
154709
(
2006
).
[6]
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
[7]
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
[8]
S.
Baroni
,
S.
De Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
[9]
G. P.
Lopinski
,
D. J.
Moffatt
,
D. D. M.
Wayner
, and
R. A.
Wolkow
,
Nature
392
,
909
(
1998
).
[10]
X.
Qiu
,
C.
Wang
,
Q.
Zeng
,
B.
Xu
,
S.
Yin
,
H.
Wang
,
S.
Xu
, and
C.
Bai
,
J. Am. Chem. Soc.
122
,
5550
(
2000
).
[11]
A.
Zhao
,
Q.
Li
,
L.
Chen
,
H.
Xiang
,
W.
Wang
,
S.
Pan
,
B.
Wang
,
X.
Xiao
,
J.
Yang
,
J. G.
Hou
, and
Q.
Zhu
,
Science
309
,
1542
(
2005
).
[12]
R.
Zhang
,
Y.
Zhang
,
Z. C.
Dong
,
S.
Jiang
,
C.
Zhang
,
L. G.
Chen
,
L.
Zhang
,
Y.
Liao
,
J.
Aizpurua
,
Y.
Luo
,
J. L.
Yang
, and
J. G.
Hou
,
Nature
498
,
82
(
2013
).
[13]
J. G.
Hou
,
J.
Yang
,
H.
Wang
,
Q.
Li
,
C.
Zeng
,
H.
Lin
,
W.
Bing
,
D. M.
Chen
, and
Q.
Zhu
,
Phys. Rev. Lett.
83
,
3001
(
1999
).
[14]
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. Lett.
50
,
1998
(
1983
).
[15]
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. B
31
,
805
(
1985
).
[16]
L.
Bartels
,
G.
Meyer
, and
K. H.
Rieder
,
Appl. Phys. Lett.
71
,
213
(
1997
).
[17]
J. R.
Hahn
,
H. J.
Lee
, and
W.
Ho
,
Phys. Rev. Lett.
85
,
1914
(
2000
).
[18]
C.
Zeng
,
H.
Wang
,
B.
Wang
,
J.
Yang
, and
J. G.
Hou
,
Appl. Phys. Lett.
77
,
3595
(
2000
).
[19]
L.
Chen
,
Z.
Hu
,
A.
Zhao
,
B.
Wang
,
Y.
Luo
,
J.
Yang
, and
J. G.
Hou
,
Phys. Rev. Lett.
99
,
146803
(
2007
).
[20]
J.
Bardeen
,
Phys. Rev. Lett.
6
,
57
(
1961
).
[21]
J.
Park
,
A. N.
Pasupathy
,
J. I.
Goldsmith
,
C.
Chang
,
Y.
Yalsh
,
J. R.
Petta
,
M.
Rinkoski
,
J. P.
Sethna
,
H. D.
Abruña
,
P. L.
McEuen
, and
D. C.
Ralph
,
Nature
417
,
722
(
2002
).
[22]
L. Z.
Ye
,
X.
Wang
,
D.
Hou
,
R. X.
Xu
,
X.
Zheng
, and
Y. J.
Yan
,
Wiley Interdiscip. Rev. Comput. Mol. Sci.
6
,
608
(
2016
).
[23]
K. G.
Wilson
,
Rev. Mod. Phys.
47
,
773
(
1975
).
[24]
[25]
M.
Caffarel
and
W.
Krauth
,
Phys. Rev. Lett.
72
,
1545
(
1994
).
[26]
J. E.
Hirsch
and
R. M.
Fye
,
Phys. Rev. Lett.
56
,
2521
(
1986
).
[27]
S.
Weiss
,
J.
Eckel
,
M.
Thorwart
, and
R.
Egger
,
Phys. Rev. B
77
,
195316
(
2008
).
[28]
H. D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
[29]
J.
Jin
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
128
,
234703
(
2008
).
[30]
Z.
Li
,
N.
Tong
,
X.
Zheng
,
D.
Hou
,
J.
Wei
,
J.
Hu
, and
Y.
Yan
,
Phys. Rev. Lett.
109
,
266403
(
2012
).
[31]
L.
Cui
,
H. D.
Zhang
,
X.
Zheng
,
R. X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
151
,
024110
(
2019
).
[32]
H. D.
Zhang
,
L.
Cui
,
H.
Gong
,
R. X.
Xu
,
X.
Zheng
, and
Y. J.
Yan
,
J. Chem. Phys.
152
,
064107
(
2020
).
[33]
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
[34]
L.
Han
,
H. D.
Zhang
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
148
,
234108
(
2018
).
[35]
M.
Pavanello
,
D. J.
Auerbach
,
A. M.
Wodtke
,
M.
Blanco-Rey
,
M.
Alducin
, and
G. J.
Kroes
,
J. Phys. Chem. Lett.
4
,
3735
(
2013
).
[36]
A. M.
Wodtke
,
Chem. Soc. Rev.
45
,
3641
(
2016
).
[37]
J.
Deslippe
,
G.
Samsonidze
,
D. A.
Strubbe
,
M.
Jain
,
M. L.
Cohen
, and
S. G.
Louie
,
Comput. Phys. Commun.
183
,
1269
(
2012
).
[38]
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
[39]
Q.
Zheng
,
W.
Chu
,
C.
Zhao
,
L.
Zhang
,
H.
Guo
,
Y.
Wang
,
X.
Jiang
, and
J.
Zhao
,
Wiley Interdiscip. Rev. Comput. Mol. Sci.
9
,
e1411
(
2019
).
[40]
A. V.
Akimov
and
O. V.
Prezhdo
,
J. Chem. Theory Comput.
9
,
4959
(
2013
).
[41]
S.
Meng
and
E.
Kaxiras
,
J. Chem. Phys.
129
,
054110
(
2008
).
[42]
W.
Li
,
L.
Zhou
,
O. V.
Prezhdo
, and
A. V.
Akimov
,
ACS Energy Lett.
3
,
2159
(
2018
).
[43]
G.
Cui
and
W.
Thiel
,
J. Chem. Phys.
141
,
124101
(
2014
).
[44]
L.
Wang
,
A.
Akimov
, and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
7
,
2100
(
2016
).
[45]
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
[46]
R.
Long
,
O. V.
Prezhdo
, and
W.
Fang
,
Wiley Interdiscip. Rev. Comput. Mol. Sci.
7
,
e1305
(
2017
).
[47]
X.
Jiang
,
Q.
Zheng
,
Z.
Lan
,
W. A.
Saidi
,
X.
Ren
, and
J.
Zhao
,
Sci. Adv.
7
,
eabf3759
(
2021
).
[48]
X.
Zeng
,
Z.
Qiu
,
P.
Li
,
Z.
Li
, and
J.
Yang
,
CCS Chem.
2
,
460
(
2020
).
[49]
Z.
Qiu
,
L.
Song
,
J.
Zhao
,
Z.
Li
, and
J.
Yang
,
Angew. Chem. Int. Ed.
55
,
9918
(
2016
).
[50]
P.
Wu
,
Y.
Zhang
,
P.
Cui
,
Z.
Li
,
J.
Yang
, and
Z.
Zhang
,
Phys. Rev. Lett.
114
,
216102
(
2015
).
[51]
P.
Li
,
Z.
Li
, and
J.
Yang
,
J. Phys. Chem. C
121
,
25949
(
2017
).
[52]
P.
Wu
,
H.
Jiang
,
W.
Zhang
,
Z.
Li
,
Z.
Hou
, and
J.
Yang
,
J. Am. Chem. Soc.
134
,
6045
(
2012
).
[53]
L.
Wang
,
X.
Zhang
,
H. L. W.
Chan
,
F.
Yan
, and
F.
Ding
,
J. Am. Chem. Soc.
135
,
4476
(
2013
).
[54]
E.
Meca
,
J.
Lowengrub
,
H.
Kim
,
C.
Mattevi
, and
V. B.
Shenoy
,
Nano Lett.
13
,
5692
(
2013
).
[55]
G.
Li
,
S. H.
Huang
, and
Z.
Li
,
Phys. Chem. Chem. Phys.
17
,
22832
(
2015
).
[56]
P.
Li
and
Z.
Li
,
J. Phys. Chem. C
124
,
16233
(
2020
).
[57]
Z.
Qiu
,
P.
Li
, and
Z.
Li
,
J.
Yang
,
Acc. Chem. Res.
51
,
728
(
2018
)
[58]
P.
Li
and
Z.
Li
,
Sci. Bull.
63
,
3419
(
2018
).
[59]
P.
Wu
,
W.
Zhang
,
Z.
Li
, and
J.
Yang
,
Small
10
,
2136
(
2014
).
[60]
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
,
New York
:
Oxford University Press
, (
1989
).
[61]
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
[62]
D. R.
Bowler
and
T.
Miyazaki
,
Rep. Prog. Phys.
75
,
036503
(
2012
).
[63]
W.
Kohn
,
Int. J. Quantum Chem.
56
,
229
(
1995
).
[64]
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
Garca
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
[65]
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
).
[66]
[67]
X.
Qin
,
H.
Shang
,
H.
Xiang
,
Z.
Li
, and
J.
Yang
,
Int. J. Quantum Chem.
115
,
647
(
2015
).
[69]
X. P.
Li
,
R. W.
Nunes
, and
D.
Vanderbilt
,
Phys. Rev. B
47
,
10891
(
1993
).
[70]
A. M. N.
Niklasson
,
Phys. Rev. B
66
,
155115
(
2002
).
[71]
A. M. N.
Niklasson
,
C. J.
Tymczak
, and
M.
Challacombe
,
J. Chem. Phys.
118
,
8611
(
2003
).
[72]
A. M. N.
Niklasson
,
C. J.
Tymczak
, and
H.
Röder
,
Phys. Rev. B
66
,
155120
(
2002
).
[73]
H. J.
Xiang
,
W. Z.
Liang
,
J.
Yang
,
J. G.
Hou
, and
Q.
Zhu
,
J. Chem. Phys.
123
,
124105
(
2005
).
[74]
H. J.
Xiang
,
J.
Yang
,
J. G.
Hou
, and
Q.
Zhu
,
J. Chem. Phys.
126
,
244707
(
2007
).
[75]
H. J.
Xiang
,
Z.
Li
,
W. Z.
Liang
,
J.
Yang
,
J. G.
Hou
, and
Q.
Zhu
,
J. Chem. Phys.
124
,
234108
(
2006
).
[76]
H. J.
Xiang
,
J.
Yang
,
J. G.
Hou
, and
Q.
Zhu
,
Phys. Rev. Lett.
97
,
266402
(
2006
).
[77]
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
[78]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
[79]
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
100
,
146401
(
2008
).
[80]
H.
Shang
,
Z.
Li
, and
J.
Yang
,
J. Phys. Chem. A
114
,
1039
(
2010
).
[81]
E.
Schwegler
,
M.
Challacombe
, and
M.
Head-Gordon
,
J. Chem. Phys.
106
,
9708
(
1997
).
[82]
A. F.
Izmaylov
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
125
,
104103
(
2006
).
[83]
D. S.
Lambrecht
and
C.
Ochsenfeld
,
J. Chem. Phys.
123
,
184101
(
2005
).
[84]
H.
Shang
,
Z.
Li
, and
J.
Yang
,
J. Chem. Phys.
135
,
034110
(
2011
).
[85]
H.
Shang
,
L.
Xu
,
B.
Wu
,
X.
Qin
,
Y.
Zhang
, and
J.
Yang
,
Comput. Phys. Commun.
254
,
107204
(
2020
).
[86]
X.
Qin
,
H.
Shang
,
L.
Xu
,
W.
Hu
,
J.
Yang
,
S.
Li
, and
Y.
Zhang
,
Int. J. High Perform. Comput. Appl.
34
,
159
(
2020
).
[87]
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
[88]
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
[89]
W.
Hu
,
L.
Lin
,
A. S.
Banerjee
,
E.
Vecharynski
, and
C.
Yang
,
J. Chem. Theory Comput.
13
,
1188
(
2017
).
[90]
J.
Lu
and
L.
Ying
,
J. Comput. Phys.
302
,
329
(
2015
).
[91]
X.
Qin
,
J.
Liu
,
W.
Hu
, and
J.
Yang
,
J. Phys. Chem. A
124
,
5664
(
2020
).
[92]
W.
Hu
,
L.
Lin
, and
C.
Yang
,
J. Chem. Theory Comput.
13
,
5420
(
2017
).
[93]
K.
Dong
,
W.
Hu
, and
L.
Lin
,
J. Chem. Theory Comput.
14
,
1311
(
2018
).
[94]
X.
Qin
,
J.
Li
,
W.
Hu
, and
J.
Yang
,
J. Phys. Chem. A
124
,
10066
(
2020
).
[95]
W.
Hu
,
J.
Liu
,
Y.
Li
,
Z.
Ding
,
C.
Yang
, and
J.
Yang
,
J. Chem. Theory Comput.
16
,
964
(
2020
).
[96]
H.
Ma
,
L.
Wang
,
L.
Wan
,
J.
Li
,
X.
Qin
,
J.
Liu
,
W.
Hu
,
L.
Lin
,
C.
Yang
, and
J.
Yang
,
J. Phys. Chem. A
125
,
7545
(
2021
).
[97]
G.
Binnig
,
H.
Rohrer
,
C.
Gerber
, and
E.
Weibel
,
Appl. Phys. Lett.
40
,
178
(
1982
).
[98]
G.
Binnig
,
H.
Rohrer
,
C.
Gerber
, and
E.
Weibel
,
Phys. Rev. Lett.
50
,
120
(
1983
).
[99]
G.
Binnig
and
H.
Rohrer
,
Surf. Sci.
126
,
236
(
1983
).
[100]
T.
Fujita
,
H.
Nakai
, and
H.
Nakatsuji
,
J. Chem. Phys.
104
,
2410
(
1996
).
[101]
G. A. D.
Briggs
and
A. J.
Fisher
,
Surf. Sci. Rep.
33
,
1
(
1999
).
[102]
M.
B̈-ttiker
,
Y.
Imry
,
R.
Landauer
, and
S.
Pinhas
,
Phys. Rev. B
31
,
6207
(
1985
).
[103]
W. A.
Hofer
,
A. S.
Foster
, and
A. L.
Shluger
,
Rev. Mod. Phys.
75
,
1287
(
2003
).
[104]
H.
Ness
and
A.
Fisher
,
Phys. Rev. B
56
,
12469
(
1997
).
[105]
H.
Ren
,
J.
Yang
, and
Y.
Luo
,
J. Chem. Phys.
133
,
064702
(
2010
).
[106]
B. C.
Stipe
,
M. A.
Rezaei
, and
W.
Ho
,
Science
279
,
1907
(
1998
).
[107]
H.
Wang
,
C.
Zeng
,
Q.
Li
,
B.
Wang
,
J.
Yang
,
J. G.
Hou
, and
Q.
Zhu
,
Surf. Sci.
442
,
L1024
(
1999
).
[108]
A. M.
Ferrari
,
C.
Pisani
,
F.
Cinquini
,
L.
Giordano
, and
G.
Pacchioni
,
J. Chem. Phys.
127
,
174711
(
2007
).
[109]
L.
Zhao
,
M.
Levendorf
,
S.
Goncher
,
T.
Schiros
,
L.
Palova
,
A.
Zabet-Khosousi
,
K. T.
Rim
,
C.
Gutierrez
,
D.
Nordlund
,
C.
Jaye
,
M.
Hybertsen
,
D.
Reichman
,
G. W.
Flynn
,
J.
Park
, and
A. N.
Pasupathy
,
Nano Lett.
13
,
4659
(
2013
).
[110]
Y.
Chen
,
T.
Cao
,
C.
Chen
,
Z.
Pedramrazi
,
D.
Haberer
,
D. G.
de Oteyza
,
F. R.
Fischer
,
S. G.
Louie
, and
M. F.
Crommie
,
Nat. Nanotechnol.
10
,
156
(
2015
).
[111]
Ó.
Paz
,
I.
Brihuega
,
J. M.
Gómez-Rodríguez
, and
J. M.
Soler
,
Phys. Rev. Lett.
94
,
056103
(
2005
).
[112]
R.
Zhang
,
Z.
Hu
,
B.
Li
, and
J.
Yang
,
J. Phys. Chem. A
118
,
8953
(
2014
).
[113]
S.
Wang
,
X.
Zheng
,
J.
Jin
, and
Y.
Yan
,
Phys. Rev. B
88
,
035129
(
2013
).
[114]
X.
Zheng
,
R.
Xu
,
J.
Xu
,
J.
Jin
,
J.
Hu
, and
Y.
Yan
,
Prog. Chem.
24
,
1129
(
2012
).
[115]
X.
Zheng
,
J.
Jin
, and
Y.
Yan
,
J. Chem. Phys.
129
,
184112
(
2008
).
[116]
X.
Zheng
,
J.
Jin
,
S.
Welack
,
M.
Luo
, and
Y.
Yan
,
J. Chem. Phys.
130
,
164708
(
2009
).
[117]
P. W.
Anderson
,
Phys. Rev.
124
,
41
(
1961
).
[118]
D.
Hou
,
R.
Wang
,
X.
Zheng
,
N.
Tong
,
J.
Wei
, and
Y.
Yan
,
Phys. Rev. B
90
,
045141
(
2014
).
[119]
Y.
Tanimura
and
P. G.
Wolynes
,
Phys. Rev. A
43
,
4131
(
1991
).
[120]
Y.
Tanimura
and
P. G.
Wolynes
,
J. Chem. Phys.
96
,
8485
(
1992
).
[121]
J.
Hu
,
R. X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
133
,
101106
(
2010
).
[122]
J.
Hu
,
M.
Luo
,
F.
Jiang
,
R. X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
134
,
244106
(
2011
).
[123]
L.
Ye
,
H. D.
Zhang
,
Y.
Wang
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
147
,
074111
(
2017
).
[124]
D.
Hou
,
S.
Wang
,
R.
Wang
,
L.
Ye
,
R.
Xu
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
142
,
104112
(
2015
).
[125]
X.
Wang
,
D.
Hou
,
X.
Zheng
, and
Y.
Yan
,
J. Chem. Phys.
144
,
034101
(
2016
).
[126]
Y.
Wang
,
X.
Zheng
, and
J.
Yang
,
Phys. Rev. B
93
,
125114
(
2016
).
[127]
Y.
Wang
,
X.
Zheng
,
B.
Li
, and
J.
Yang
,
J. Chem. Phys.
141
,
084713
(
2014
).
[128]
X.
Li
,
L.
Zhu
,
B.
Li
,
J.
Li
,
P.
Gao
,
L.
Yang
,
A.
Zhao
,
Y.
Luo
,
J.
Hou
,
X.
Zheng
,
B.
Wang
, and
J.
Yang
,
Nat. Commun.
11
,
2566
(
2020
).
[129]
M.
Bernardi
,
M.
Palummo
, and
J. C.
Grossman
,
Nano Lett.
13
,
3664
(
2013
).
[130]
A.
Fujishima
and
K.
Honda
,
Nature
238
,
37
(
1972
).
[131]
C. J.
Docherty
,
P.
Parkinson
,
H. J.
Joyce
,
M. H.
Chiu
,
C. H.
Chen
,
M. Y.
Lee
,
L. J.
Li
,
L. M.
Herz
, and
M. B.
Johnston
,
ACS Nano
8
,
11147
(
2014
).
[132]
T.
Korn
,
S.
Heydrich
,
M.
Hirmer
,
J.
Schmutzler
, and
C.
Schller
,
Appl. Phys. Lett.
99
,
102109
(
2011
).
[133]
S. L.
Fiedler
and
J.
Eloranta
,
Mol. Phys.
108
,
1471
(
2010
).
[134]
J. C.
Tully
,
J. Chem. Phys.
137
,
22A301
(
2012
).
[135]
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
[136]
Q.
Zheng
,
W. A.
Saidi
,
Y.
Xie
,
Z.
Lan
,
O. V.
Prezhdo
,
H.
Petek
, and
J.
Zhao
,
Nano Lett.
17
,
6435
(
2017
).
[137]
Q.
Zheng
,
Y.
Xie
,
Z.
Lan
,
O. V.
Prezhdo
,
W. A.
Saidi
, and
J.
Zhao
,
Phys. Rev. B
97
,
205417
(
2018
).
[138]
W.
Chu
,
W. A.
Saidi
,
Q.
Zheng
,
Y.
Xie
,
Z.
Lan
,
O. V.
Prezhdo
,
H.
Petek
, and
J.
Zhao
,
J. Am. Chem. Soc.
138
,
13740
(
2016
).
[139]
W.
Chu
,
Q.
Zheng
,
O. V.
Prezhdo
,
J.
Zhao
, and
W. A.
Saidi
,
Sci. Adv.
6
,
eaaw7453
(
2020
).
[140]
L.
Zhang
,
W.
Chu
,
Q.
Zheng
,
A. V.
Benderskii
,
O. V.
Prezhdo
, and
J.
Zhao
,
J. Phys. Chem. Lett.
10
,
6151
(
2019
).
[141]
L.
Zhang
,
Q.
Zheng
,
Y.
Xie
,
Z.
Lan
,
O. V.
Prezhdo
,
W. A.
Saidi
, and
J.
Zhao
,
Nano Lett.
18
,
1592
(
2018
).
[142]
C.
Zhao
,
Q.
Zheng
,
J.
Wu
, and
J.
Zhao
,
Phys. Rev. B
96
,
134308
(
2017
).
[143]
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. USA
99
,
12562
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.