Three-dimensional (3D) diabatic potential energy surfaces (PESs) of thiophenol involving the S0, and coupled 1ππ* and 1πσ* states were constructed by a neural network approach. Specifically, the diabatization of the PESs for the 1ππ* and 1πσ* states was achieved by the fitting approach with neural networks, which was merely based on adiabatic energies but with the correct symmetry constraint on the off-diagonal term in the diabatic potential energy matrix. The root mean square errors (RMSEs) of the neural network fitting for all three states were found to be quite small (<4 meV), which suggests the high accuracy of the neural network method. The computed low-lying energy levels of the S0 state and lifetime of the 0° state of S1 on the neural network PESs are found to be in good agreement with those from the earlier diabatic PESs, which validates the accuracy and reliability of the PESs fitted by the neural network approach.

[1]
M.
Born
and
J. R.
Oppenheimer
,
Ann. Phys.
84
,
457
(
1927
).
[2]
M.
Baer
,
Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections
,
New Jersey
:
John Wiley & Sons
, (
2006
).
[3]
I. G.
Ryabinkin
and
A. F.
Izmaylov
,
Phys. Rev. Lett.
111
,
220406
(
2013
).
[4]
C.
Xie
,
D. R.
Yarkony
, and
H.
Guo
,
Phys. Rev. A
95
,
022104
(
2017
).
[5]
H.
Guo
and
D. R.
Yarkony
,
Phys. Chem. Chem. Phys.
18
,
26335
(
2016
).
[6]
X.
Zhu
and
D. R.
Yarkony
,
J. Chem. Phys.
137
,
22A511
(
2012
).
[7]
X.
Zhu
and
D. R.
Yarkony
,
J. Chem. Phys.
136
,
174110
(
2012
).
[8]
N.
Sathyamurthy
and
L. M.
Raff
,
J. Chem. Phys.
63
,
464
(
1975
).
[9]
C.
Xu
,
D.
Xie
,
D. H.
Zhang
,
S. Y.
Lin
, and
H.
Guo
,
J. Chem. Phys.
122
,
244305
(
2005
).
[10]
A. J. C.
Varandas
,
Adv. Chem. Phys.
74
,
255
(
1988
).
[11]
S.
Carter
,
I. M.
Mills
, and
J. N.
Murrell
,
Mol. Phys.
41
,
191
(
1980
).
[12]
J.
Ischtwan
and
M. A.
Collins
,
J. Chem. Phys.
100
,
8080
(
1994
).
[13]
M. A.
Collins
,
Theor. Chem. Acc.
108
,
313
(
2002
).
[14]
T.
Hollebeek
,
T. S.
Ho
, and
H.
Rabitz
,
Annu. Rev. Phys. Chem.
50
,
537
(
1999
).
[15]
R.
Dawes
,
D. L.
Thompson
,
A. F.
Wagner
, and
M.
Minkoff
,
J. Chem. Phys.
128
,
084107
(
2008
).
[16]
B. J.
Braams
and
J. M.
Bowman
,
Int. Rev. Phys. Chem.
28
,
577
(
2009
).
[17]
J. M.
Bowman
,
G.
Czako
, and
B.
Fu
,
Phys. Chem. Chem. Phys.
13
,
8094
(
2011
).
[18]
B.
Kolb
,
P.
Marshall
,
B.
Zhao
,
B.
Jiang
, and
H.
Guo
,
J. Phys. Chem. A
121
,
2552
(
2017
).
[19]
T. B.
Blank
,
S. D.
Brown
,
A. W.
Calhoun
, and
D. J.
Doren
,
J. Chem. Phys.
103
,
4129
(
1995
).
[20]
C. M.
Handley
and
P. L. A.
Popelier
,
J. Phys. Chem. A
114
,
3371
(
2010
).
[21]
L. M.
Raff
,
R.
Komanduri
,
M.
Hagan
, and
S. T. S.
Bukkapatnam
,
Neural Networks in Chemical Reaction Dynamics
.
New York
:
Oxford University Press
, (
2012
).
[22]
K.
Shao
,
J.
Chen
,
Z.
Zhao
, and
D. H.
Zhang
,
J. Chem. Phys.
145
,
071101
(
2016
).
[23]
J.
Behler
,
Phys. Chem. Chem. Phys.
13
,
17930
(
2011
).
[24]
B.
Jiang
,
J.
Li
, and
H.
Guo
,
Int. Rev. Phys. Chem.
35
,
479
(
2016
).
[25]
Z.
Yin
,
B. J.
Braams
,
Y.
Guan
,
B.
Fu
, and
D. H.
Zhang
,
Phys. Chem. Chem. Phys.
23
,
1082
(
2021
).
[26]
Y.
Wang
,
Y.
Guan
,
H.
Guo
, and
D. R.
Yarkony
,
J. Chem. Phys.
154
,
094121
(
2021
).
[27]
Y.
Guan
,
C.
Xie
,
H.
Guo
, and
D. R.
Yarkony
,
J. Chem. Theory Comput.
17
,
4157
(
2021
).
[28]
Y.
Hong
,
Z.
Yin
,
Y.
Guan
,
Z.
Zhang
,
B.
Fu
, and
D. H.
Zhang
,
J. Phys. Chem. Lett.
11
,
7552
(
2020
).
[29]
Y.
Guan
and
D. R.
Yarkony
,
J. Phys. Chem. Lett.
11
,
1848
(
2020
).
[30]
Y.
Guan
,
C.
Xie
,
H.
Guo
, and
D. R.
Yarkony
,
J. Phys. Chem. A
124
,
10132
(
2020
).
[31]
Y.
Guan
,
H.
Guo
, and
D. R.
Yarkony
,
J. Chem. Theory Comput.
16
,
302
(
2020
).
[32]
Z.
Yin
,
Y.
Guan
,
B.
Fu
, and
D. H.
Zhang
,
Phys. Chem. Chem. Phys.
21
,
20372
(
2019
).
[33]
Y.
Guan
,
D. H.
Zhang
,
H.
Guo
, and
D. R.
Yarkony
,
Phys. Chem. Chem. Phys.
21
,
14205
(
2019
).
[34]
Y.
Guan
,
H.
Guo
, and
D. R.
Yarkony
,
J. Chem. Phys.
150
,
214101
(
2019
).
[35]
Y.
Guan
,
B.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
147
,
224307
(
2017
).
[36]
Z.
Yin
,
B. J.
Braams
,
B.
Fu
, and
D. H.
Zhang
,
J. Chem. Theory Comput.
17
,
1678
(
2021
).
[37]
D. M. G.
Williams
, and
W.
Eisfeld
,
J. Phys. Chem. A
124
,
7608
(
2020
).
[38]
T.
Lenzen
and
U.
Manthe
,
J. Chem. Phys.
147
,
084105
(
2017
).
[39]
H.
Kang
,
K. T.
Lee
,
B.
Jung
,
Y. J.
Ko
, and
S. K.
Kim
,
J. Am. Chem. Soc.
124
,
12958
(
2002
).
[40]
M. N. R.
Ashfold
,
G. A.
King
,
D.
Murdock
,
M. G. D.
Nix
,
T. A. A.
Oliver
, and
A. G.
Sage
,
Phys. Chem. Chem. Phys.
12
,
1218
(
2010
).
[41]
M. N. R.
Ashfold
,
B.
Cronin
,
A. L.
Devine
,
R. N.
Dixon
, and
M. G. D.
Nix
,
Science
312
,
1637
(
2006
).
[42]
M. N. R.
Ashfold
,
A. L.
Devine
,
R. N.
Dixon
,
G. A.
King
,
M. G. D.
Nix
, and
T. A. A.
Oliver
,
Proc. Natl. Acad. Sci. USA
105
,
12701
(
2008
).
[43]
L.
Zhang
,
D. C.
Truhlar
, and
S.
Sun
,
J. Chem. Phys.
151
,
154306
(
2019
).
[44]
T. S.
Venkatesan
,
S. G.
Ramesh
,
Z.
Lan
, and
W.
Domcke
,
J. Chem. Phys.
136
,
174312
(
2012
).
[45]
G. S. M.
Lin
,
C.
Xie
, and
D.
Xie
,
J. Phys. Chem. A
121
,
8432
(
2017
).
[46]
G. S. M.
Lin
,
C.
Xie
, and
D.
Xie
,
J. Phys. Chem. A
122
,
5375
(
2018
).
[47]
H.
Köppel
and
B.
Schubert
,
Mol. Phys.
104
,
1069
(
2006
).
[48]
H.
Köppel
,
J.
Gronki
and
S.
Mahapatra
,
J. Chem. Phys.
115
,
2377
(
2001
).
[49]
B.
Jiang
and
H.
Guo
,
J. Chem. Phys.
139
,
054112
(
2013
).
[50]
D. W.
Marquardt
,
J. Soc. Ind. Appl. Math.
11
,
431
(
1963
).
[51]
N. W.
Larsen
and
F. M.
Nicolaisen
,
J. Mol. Struct.
22
,
29
(
1974
).
[52]
B. D.
Saksena
and
P. H.
Trevedi
,
Trans. Faraday Soc.
58
,
2082
(
1962
).
This content is only available via PDF.
You do not currently have access to this content.