In order to investigate the origin of catalytic power for serine proteases, the role of the hydrogen bond in the catalytic triad was studied in the proteolysis process of the peptides chymotrypsin inhibitor 2 (CI2), MCTI-A, and a hexapeptide (SUB), respectively. We first calculated the free energy profile of the proton transfer between His and Asp residues of the catalytic triad in the enzyme-substrate state and transition state by employing QM/MM molecular dynamics simulations. The results show that a low-barrier hydrogen bond (LBHB) only forms in the transition state of the acylation of CI2, while it is a normal hydrogen bond in the acylation of MCTI-A or SUB. In addition, the change of the hydrogen bond strength is much larger in CI2 and SUB systems than in MCTI-A system, which decreases the acylation energy barrier significantly for CI2 and SUB. Clearly, a LBHB formed in the transition state region helps accelerate the acylation reaction. But to our surprise, a normal hydrogen bond can also help to decrease the energy barrier. The key to reducing the reaction barrier is the increment of hydrogen bond strength in the transition state state, whether it is a LBHB or not. Our studies cast new light on the role of the hydrogen bond in the catalytic triad, and help to understand the catalytic triad of serine proteases.

[1]
L.
Hedstrom
,
Chem. Rev.
102
,
4501
(
2002
).
[2]
T.
Ishida
and
S.
Kato
,
J. Am. Chem. Soc.
125
,
12035
(
2003
).
[3]
W. W.
Cleland
,
Biochemistry
31
,
317
(
1992
).
[4]
W. W.
Cleland
and
M. M.
Kreevoy
,
Science
264
,
1887
(
1994
).
[5]
P. A.
Frey
,
S. A.
Whitt
, and
J. B.
Tobin
,
Science
264
,
1927
(
1994
).
[6]
J. A.
Gerlt
and
P. G.
Gassman
,
Biochemistry
32
,
11943
(
1993
).
[7]
W. W.
Cleland
,
P. A.
Frey
, and
J. A.
Gerlt
,
J. Biol. Chem.
273
,
25529
(
1998
).
[8]
A.
Warshel
and
A.
Papazyan
,
Proc. Natl. Acad. Sci. USA
93
,
13665
(
1996
).
[9]
E. L.
Ash
,
J. L.
Sudmeier
,
E. C.
DeFabo
, and
W. W.
Bachovchin
,
Science
278
,
1128
(
1997
).
[10]
M. V.
Hosur
,
R.
Chitra
,
S.
Hegde
,
R. R.
Choudhury
,
A.
Das
, and
R. V.
Hosur
,
Crystallogr. Rev.
19
,
3
(
2013
).
[11]
M. T.
Kemp
,
E. M.
Lewandowski
, and
Y.
Chen
,
BBA-Proteins. Proteom.
1869
,
140557
(
2021
).
[12]
P.
Kumar
,
P. K.
Agarwal
, and
M. J.
Cuneo
,
Chem-BioChem
22
,
288
(
2021
).
[13]
K.
Fodor
,
V.
Harmat
,
R.
Neutze
,
L.
Szilagyi
,
L.
Graf
, and
G.
Katona
,
Biochemistry
45
,
2114
(
2006
).
[14]
[15]
A. S.
Mildvan
,
T. K.
Harris
, and
C.
Abeygunawardana
, Nuclear Magnetic Resonance Methods for the Detection and Study of Low-Barrier Hydrogen Bonds on Enzymes. In
Enzyme Kinetics and Mechanism, Pt E: Energetics of Enzyme Catalysis
,
V. L.
Schramm
,
D. L.
Purich
, Eds. Vol.
308
,
219
(
1999
).
[16]
M. A.
Massiah
,
C.
Viragh
,
P. M.
Reddy
,
I. M.
Kovach
,
J.
Johnson
,
T. L.
Rosenberry
, and
A. S.
Mildvan
,
Biochemistry
40
,
5682
(
2001
).
[17]
P.
Agback
and
T.
Agback
,
Sci. Rep.
8
,
10078
(
2018
).
[18]
C. N.
Fuhrmann
,
M. D.
Daugherty
, and
D. A.
Agard
,
J. Am. Chem. Soc.
128
,
9086
(
2006
).
[19]
C. Y.
Lin
and
S. G.
Boxer
,
J. Phys. Chem. B
124
,
9513
(
2020
).
[20]
S.
Scheiner
and
T.
Kar
,
J. Am. Chem. Soc.
117
,
6970
(
1995
).
[22]
J.
Lin
,
E.
Pozharski
, and
M. A.
Wilson
,
Biochemistry
56
,
391
(
2017
).
[23]
J.
Lu
,
I.
Hung
,
A.
Brinkmann
,
Z.
Gan
,
X.
Kong
, and
G.
Wu
,
Angew. Chem. Int. Ed.
56
,
6166
(
2017
).
[24]
M.
Nadal-Ferret
,
R.
Gelabert
,
M.
Moreno
, and
J. M.
Lluch
,
J. Am. Chem. Soc.
136
,
3542
(
2014
).
[25]
E. S.
Radisky
and
D. E.
Koshland
,
Proc. Natl. Acad. Sci. USA
99
,
10316
(
2002
).
[26]
Q. C.
Huang
,
S. P.
Liu
, and
Y. Q.
Tang
,
J. Mol. Biol.
229
,
1022
(
1993
).
[27]
M.
Rostkowski
,
M. H. M.
Olsson
,
C. R.
Sondergaard
, and
J. H.
Jensen
,
BMC Struct. Bio.
11
,
6
(
2011
).
[28]
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C. P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
[29]
D. A.
Case
,
T. A.
Darden
,
I. T. E.
Cheatham
,
C. L.
Simmerling
,
J.
Wang
,
R. E.
Duke
,
R.
Luo
,
R. C.
Walker
,
W.
Zhang
,
K. M.
Merz
,
B.
Roberts
,
S.
Hayik
,
A.
Roitberg
,
G.
Seabra
,
J.
Swails
,
A. W.
Götz
,
I.
Kolossváry
,
K. F.
Wong
,
F.
Paesani
,
J.
Vanicek
,
R. M.
Wolf
,
J.
Liu
,
X.
Wu
,
S. R.
Brozell
,
T.
Steinbrecher
,
H.
Gohlke
,
Q.
Cai
,
X.
Ye
,
J.
Wang
,
M. J.
Hsieh
,
G.
Cui
,
D. R.
Roe
,
D. H.
Mathews
,
M. G.
Seetin
,
R.
Salomon-Ferrer
,
C.
Sagui
,
V.
Babin
,
T.
Luchko
,
S.
Gusarov
,
A.
Kovalenko
, and
P. A.
Kollman
,
Amber12
,
San Francisco
:
University of California
, (
2012
).
[30]
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
[31]
V.
Hornak
,
R.
Abel
,
A.
Okur
,
B.
Strockbine
,
A.
Roitberg
, and
C.
Simmerling
,
Proteins
65
,
712
(
2006
).
[32]
Y.
Zhang
,
Theor. Chem. Acc.
116
,
43
(
2006
).
[33]
Y. K.
Zhang
,
T. S.
Lee
, and
W. T.
Yang
,
J. Chem. Phys.
110
,
46
(
1999
).
[34]
Y. K.
Zhang
,
J. Chem. Phys.
122
,
024114
(
2005
).
[35]
Y.
Zhou
and
Y.
Zhang
,
Chem. Commun.
47
,
1577
(
2011
).
[36]
W.
Wei
,
Y.
Chen
,
D.
Xie
, and
Y.
Zhou
,
Phys. Chem. Chem. Phys.
21
,
5049
(
2019
).
[37]
W.
Wei
,
J.
Ma
,
D.
Xie
, and
Y.
Zhou
,
RSC Adv.
9
,
13776
(
2019
).
[38]
Y. K.
Zhang
,
H. Y.
Liu
, and
W. T.
Yang
,
J. Chem. Phys.
112
,
3483
(
2000
).
[39]
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
,
J. Comput. Chem.
13
,
1011
(
1992
).
[40]
M.
Souaille
and
B.
Roux
,
Comput. Phys. Commun.
135
,
40
(
2001
).
[41]
C. A.
McPhalen
,
I.
Svendsen
,
I.
Jonassen
, and
M. N. G.
James
,
Proc. Natl. Acad. Sci. USA
82
,
7242
(
1985
).
[42]
E. N.
Baker
and
R. E.
Hubbard
,
Prog. Biophys. Mol. Bio.
44
,
97
(
1984
).
[43]
P. A.
Sigala
,
E. A.
Ruben
,
C. W.
Liu
,
P. M. B.
Piccoli
,
E. G.
Hohenstein
,
T. J.
Martinez
,
A. J.
Schultz
, and
D.
Herschlag
,
J. Am. Chem. Soc.
137
,
5730
(
2015
).
[44]
M. H.
Hao
,
J. Chem. Theory Comput.
2
,
863
(
2006
).
[45]
Y.
Zhang
and
C. S.
Wang
,
J. Comput. Chem.
30
,
1251
(
2009
).
[46]
C. S.
Wang
,
Y.
Zhang
,
K.
Gao
, and
Z. Z.
Yang
,
J. Chem. Phys.
123
,
024307
(
2005
).
[47]
I. L.
Karle
,
J. Mol. Struct.
474
,
103
(
1999
).
[48]
S. Y.
Sheu
,
D. Y.
Yang
,
H. L.
Selzle
, and
E. W.
Schlag
,
Proc. Natl. Acad. Sci. USA
100
,
12683
(
2003
).
[49]
E.
Arunan
,
G. R.
Desiraju
,
R. A.
Klein
,
J.
Sadlej
,
S.
Scheiner
,
I.
Alkorta
,
D. C.
Clary
,
R. H.
Crabtree
,
J. J.
Dannenberg
,
P.
Hobza
,
H. G.
Kjaergaard
,
A. C.
Legon
,
B.
Mennucci
, and
D. J.
Nesbitt
,
Pure Appl. Chem.
83
,
1619
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.