Machine learning potentials are promising in atomistic simulations due to their comparable accuracy to first-principles theory but much lower computational cost. However, the reliability, speed, and transferability of atomistic machine learning potentials depend strongly on the way atomic configurations are represented. A wise choice of descriptors used as input for the machine learning program is the key for a successful machine learning representation. Here we develop a simple and efficient strategy to automatically select an optimal set of linearly-independent atomic features out of a large pool of candidates, based on the correlations that are intrinsic to the training data. Through applications to the construction of embedded atom neural network potentials for several benchmark molecules with less redundant linearly-independent embedded density descriptors, we demonstrate the efficiency and accuracy of this new strategy. The proposed algorithm can greatly simplify the initial selection of atomic features and vastly improve the performance of the atomistic machine learning potentials.

[1]
S.
Manzhos
,
R.
Dawes
, and
T.
Carrington
 Jr.
,
Int. J. Quant. Chem.
115
,
1012
(
2015
).
[2]
B.
Jiang
,
J.
Li
, and
H.
Guo
,
Int. Rev. Phys. Chem.
35
,
479
(
2016
).
[3]
K.
Shao
,
J.
Chen
,
Z.
Zhao
, and
D. H.
Zhang
,
J. Chem. Phys.
145
,
071101
(
2016
).
[4]
M.
Majumder
,
A. S.
Ndengué
, and
R.
Dawes
,
Mol. Phys.
114
,
1
(
2016
).
[5]
R. V.
Krems
,
Phys. Chem. Chem. Phys.
21
,
13392
(
2019
).
[6]
B.
Jiang
,
J.
Li
, and
H.
Guo
,
J. Phys. Chem. Lett.
11
,
5120
(
2020
).
[7]
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
[8]
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
[9]
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
,
J. Comput. Phys.
285
,
316
(
2015
).
[10]
A. V.
Shapeev
,
Multiscale Model. Simul.
14
,
1153
(
2016
).
[11]
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and W. E,
Phys. Rev. Lett.
120
,
143001
(
2018
).
[12]
K. T.
Schütt
,
H. E.
Sauceda
,
P. J.
Kindermans
,
A.
Tkatchenko
, and
K. R.
Müller
,
J. Chem. Phys.
148
,
241722
(
2018
).
[13]
J.
Zeng
,
L.
Cao
,
M.
Xu
,
T.
Zhu
, and
J. Z. H.
Zhang
,
Nat. Commun.
11
,
5713
(
2020
).
[14]
P. L.
Kang
,
C.
Shang
, and
Z. P.
Liu
,
Acc. Chem. Res.
53
,
2119
(
2020
).
[15]
B. J.
Braams
and
J. M.
Bowman
,
Int. Rev. Phys. Chem.
28
,
577
(
2009
).
[16]
J.
Li
,
B.
Jiang
, and
H.
Guo
,
J. Chem. Phys.
139
,
204103
(
2013
).
[17]
B.
Jiang
,
J.
Li
, and
H.
Guo
,
J. Chem. Phys.
140
,
034112
(
2014
).
[18]
C.
Qu
,
Q.
Yu
,
B. L.
Van Hoozen
,
J. M.
Bowman
, and
R. A.
Vargas-Hernández
,
J. Chem. Theory Comput.
14
,
3381
(
2018
).
[19]
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. B
87
,
184115
(
2013
).
[20]
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
[21]
J.
Nigam
,
S.
Pozdnyakov
, and
M.
Ceriotti
,
J. Chem. Phys.
153
,
121101
(
2020
).
[22]
M.
Gastegger
,
L.
Schwiedrzik
,
M.
Bittermann
,
F.
Berzsenyi
, and
P.
Marquetand
,
J. Chem. Phys.
148
,
241709
(
2018
).
[23]
Y.
Zhang
,
C.
Hu
, and
B.
Jiang
,
J. Phys. Chem. Lett.
10
,
4962
(
2019
).
[24]
B.
Kolb
,
B.
Zhao
,
J.
Li
,
B.
Jiang
, and
H.
Guo
,
J. Chem. Phys.
144
,
224103
(
2016
).
[25]
G.
Imbalzano
,
A.
Anelli
,
D.
Giofré
,
S.
Klees
,
J.
Behler
, and
M.
Ceriotti
,
J. Chem. Phys.
148
,
241730
(
2018
).
[26]
M. W.
Mahoney
and
P.
Drineas
,
Proc. Natl. Acad. Sci. USA
106
,
697
(
2009
).
[27]
R. K.
Cersonsky
,
B. A.
Helfrecht
,
E. A.
Engel
,
S.
Kliavinek
, and
M.
Ceriotti
,
Mach. Learn.: Sci. Technol.
2
,
035038
(
2021
).
[28]
B.
Parsaeifard
,
D.
Tomerini
,
D. S.
De
, and
S.
Goedecker
,
J. Chem. Phys.
153
,
214104
(
2020
).
[29]
R.
Chen
,
K.
Shao
,
B.
Fu
, and
D. H.
Zhang
,
J. Chem. Phys.
152
,
204307
(
2020
).
[30]
A.
Takahashi
,
A.
Seko
, and
I.
Tanaka
,
Phys. Rev. Mater.
1
,
063801
(
2017
).
[31]
Y.
Zhang
,
C.
Hu
, and
B.
Jiang
,
Phys. Chem. Chem. Phys.
23
,
1815
(
2021
).
[32]
V.
Zaverkin
and
J.
Kästner
,
J. Chem. Theory Comput.
16
,
5410
(
2020
).
[33]
X.
Zhou
,
Y.
Zhang
,
R.
Yin
,
C.
Hu
, and
B.
Jiang
,
Chin. J. Chem.
39
,
2917
(
2021
).
[34]
X.
Zhou
,
Y.
Zhang
,
H.
Guo
, and
B.
Jiang
,
Phys. Chem. Chem. Phys.
23
,
4376
(
2021
).
[35]
R.
Yin
and
B.
Jiang
,
Phys. Rev. Lett.
126
,
156101
(
2021
).
[36]
C.
Hu
,
Y.
Zhang
, and
B.
Jiang
,
J. Phys. Chem. C
124
,
23190
(
2020
).
[37]
L.
Zhu
,
Y.
Zhang
,
L.
Zhang
,
X.
Zhou
, and
B.
Jiang
,
Phys. Chem. Chem. Phys.
22
,
13958
(
2020
).
[38]
Y.
Zhang
,
S.
Ye
,
J.
Zhang
,
C.
Hu
,
J.
Jiang
, and
B.
Jiang
,
J. Phys. Chem. B
124
,
7284
(
2020
).
[39]
Y.
Zhang
,
R. J.
Maurer
, and
B.
Jiang
,
J. Phys. Chem. C
124
,
186
(
2020
).
[40]
W. K.
Chen
,
Y.
Zhang
,
B.
Jiang
,
W. H.
Fang
, and
G.
Cui
,
J. Phys. Chem. A
124
,
5684
(
2020
).
[41]
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schutt
, and
K. R.
Müller
,
Sci. Adv.
3
,
e1603015
(
2017
).
[42]
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K. R.
Müller
,
Chem. Rev.
121
,
10142
(
2021
).
[43]
L.
Zhang
,
J.
Han
,
H.
Wang
,
W. A.
Saidi
,
R.
Car
, and
E.
Weinan
,
in Proceedings of the 32nd International Conference on Neural Information Processing Systems
,
Montreal, Canada
:
Curran Associates Inc
.,
4441
(
2018
).
[44]
F. A.
Faber
,
L.
Hutchison
,
B.
Huang
,
J.
Gilmer
,
S. S.
Schoenholz
,
G. E.
Dahl
,
O.
Vinyals
,
S.
Kearnes
,
P. F.
Riley
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
13
,
5255
(
2017
).
[45]
Q.
Lin
,
Y.
Zhang
,
B.
Zhao
, and
B.
Jiang
,
J. Chem. Phys.
152
,
154104
(
2020
).
[46]
Q.
Lin
,
L.
Zhang
,
Y.
Zhang
, and
B.
Jiang
,
J. Chem. Theory Comput.
17
,
2691
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.