Monte Carlo (MC) methods are important computational tools for molecular structure optimizations and predictions. When solvent effects are explicitly considered, MC methods become very expensive due to the large degree of freedom associated with the water molecules and mobile ions. Alternatively implicit-solvent MC can largely reduce the computational cost by applying a mean field approximation to solvent effects and meanwhile maintains the atomic detail of the target molecule. The two most popular implicit-solvent models are the Poisson-Boltzmann (PB) model and the Generalized Born (GB) model in a way such that the GB model is an approximation to the PB model but is much faster in simulation time. In this work, we develop a machine learning-based implicit-solvent Monte Carlo (MLIMC) method by combining the advantages of both implicit solvent models in accuracy and efficiency. Specifically, the MLIMC method uses a fast and accurate PB-based machine learning (PBML) scheme to compute the electrostatic solvation free energy at each step. We validate our MLIMC method by using a benzene-water system and a protein-water system. We show that the proposed MLIMC method has great advantages in speed and accuracy for molecular structure optimization and prediction.

[1]
G. W.
Wei
,
Nature Machine Intelligence
1
,
336
(
2019
).
[2]
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
31
,
459
(
1959
).
[3]
M.
Karplus
and
J.
Kuriyan
,
Proc. Nat. Acad. Sci. USA
102
,
6679
(
2005
).
[4]
[5]
H. A.
Scheraga
,
M.
Khalili
, and
A.
Liwo
,
Annu. Rev. Phys. Chem.
58
,
57
(
2007
).
[6]
D.
Chen
,
Z.
Chen
,
C.
Chen
,
W. H.
Geng
, and
G. W.
Wei
,
J. Comput. Chem.
32
,
657
(
2011
).
[7]
W. H.
Geng
and
R.
Krasny
,
J. Comput. Phys.
247
,
62
(
2013
).
[8]
C.
Sagui
and
T. A.
Darden
.
Annu. Rev. Biophys. Biomol. Struct.
28
,
155
(
1999
).
[9]
G.
Sutmann
,
P.
Gibbon
,
T.
Lippert
,
Forschungszentrum Jülich
, (
2011
).
[10]
D.
Frenkel
,
NIC Series
,
23
,
29
(
2004
).
[11]
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
.
J. Chem. Phys.
21
,
1087
(
1953
).
[12]
M. E.
Davis
and
J. A.
McCammon
,
Chem. Rev.
94
,
509
(
1990
).
[13]
F.
Fogolari
,
A.
Brigo
, and
H.
Molinari
,
J. Mol. Recogn.
15
,
377
(
2002
).
[14]
M.
Cossi
,
V.
Barone
,
R.
Cammi
, and
J.
Tomasi
,
Chem. Phys. Lett.
255
,
327
(
1996
).
[15]
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
[16]
B. N.
Dominy
and
C. L.
Brooks
 III
,
J. Phys. Chem. B
103
,
3765
(
1999
).
[17]
J.
Mongan
,
C.
Simmerling
,
J. A.
McCammon
,
D. A.
Case
, and
A.
Onufriev
,
J. Chem. Theory Comput.
3
,
159
(
2007
).
[18]
A.
Onufriev
,
D. A.
Case
, and
D.
Bashford
,
J. Comput. Chem.
23
,
1297
(
2002
).
[19]
H.
Tjong
and
H. X.
Zhou
,
J. Chem. Phys.
126
,
195102
(
2007
).
[20]
D.
Beglov
and
B.
Roux
,
J. Chem. Phys.
104
,
8678
, (
1996
).
[21]
A.
Onufriev
,
D.
Bashford
, and
D. A.
Case
,
J. Phys. Chem. B
104
,
3712
(
2000
).
[22]
D. D.
Nguyen
,
B.
Wang
, and
G. W.
Wei
,
J. Computat. Chem.
38
,
94
(
2017
).
[23]
E.
Jurrus
,
D.
Engel
,
K.
Star
,
K.
Monson
,
J.
Brandi
,
L.
Felberg
,
D.
Brookes
,
L.
Wilson
,
J.
Chen
,
K.
Liles
,
M.
Chun
,
P.
Li
,
D.
Gohara
,
T.
Dolinsky
,
R.
Konecny
,
D.
Koes
,
J.
Nielsen
,
T.
Head-Gordon
,
W.
Geng
,
R.
Krasny
,
G. W.
Wei
,
M.
Holst
,
J.
McCammon
, and
N.
Baker
,
Protein Sci.
27
,
112
(
2018
).
[24]
E.
Wang
,
H.
Sun
,
J.
Wang
,
Z.
Wang
,
H.
Liu
,
J. Z.
Zhang
, and
T.
Hou
,
Chem. Rev.
119
,
9478
(
2019
).
[25]
S.
Jo
,
M.
Vargyas
,
J.
Vasko-Szedlar
,
B.
Roux
, and
W.
Im
,
Nucleic Acids Res.
36
,
W270
(
2008
).
[26]
N. A.
Baker
,
D.
Sept
,
M. J.
Holst
, and
J. A.
Mccammon
,
IBM J. Res. Develop.
45
,
427
(
2001
).
[27]
B.
Lu
,
X.
Cheng
,
J.
Huang
, and
J. A.
McCammon
,
Comput. Phys. Commun.
184
,
2618
(
2013
).
[28]
J.
Wang
,
C. H.
Tan
,
Y. H.
Tan
,
Q.
Lu
, and
R.
Luo
.
Commun. Comput. Phys.
3
,
1010
(
2008
).
[29]
L.
Li
,
C.
Li
,
S.
Sarkar
,
J.
Zhang
,
S.
Witham
,
Z.
Zhang
,
L.
Wang
,
N.
Smith
,
M.
Petukh
, and
E.
Alexov
,
BMC biophys.
5
,
9
(
2012
).
[30]
W.
Geng
,
S.
Yu
, and
G. W.
Wei
,
J. Chem. Phys.
127
,
114106
(
2007
).
[31]
W.
Geng
and
S.
Zhao
,
J. Comput. Phys.
351
,
25
(
2017
).
[32]
D. D.
Nguyen
,
B.
Wang
, and
G. W.
Wei
,
J. Comput. Chem.
38
,
941
(
2017
).
[33]
Y. C.
Zhou
,
M.
Feig
, and
G. W.
Wei
,
J. Comput. Chem.
29
,
87
(
2008
).
[34]
N.
Forouzesh
,
S.
Izadi
, and
A. V.
Onufriev
,
J. Chem. Inform. Model.
57
,
2505
(
2017
).
[35]
B.
Liu
,
B.
Wang
,
R.
Zhao
,
Y.
Tong
, and
G. W.
Wei
,
Eses: Software for Eulerian Solvent Excluded Surface
, (
2017
).
[36]
S.
Decherchi
and
W.
Rocchia
,
PloS one
8
,
e59744
, (
2013
).
[37]
M. F.
Sanner
,
A. J.
Olson
, and
J. C.
Spehner
,
Biopolymers
38
,
305
(
1996
).
[38]
T. B.
Hughes
,
G. P.
Miller
, and
S. J.
Swamidass
,
ACS Cent. Sci.
1
,
168
(
2015
).
[39]
A.
Lusci
,
G.
Pollastri
, and
P.
Baldi
,
J. Chem. Informa. Model.
53
,
1563
(
2013
).
[40]
D. D.
Nguyen
,
Z.
Cang
,
K.
Wu
,
M.
Wang
,
Y.
Cao
, and
G. W.
Wei
,
J. Computer-Aided Mol. Design
33
,
71
(
2019
).
[41]
T.
Ching
,
D. S.
Himmelstein
,
B. K.
Beaulieu-Jones
,
A. A.
Kalinin
,
B. T.
Do
,
G. P.
Way
,
E.
Ferrero
,
P. M.
Agapow
,
M.
Zietz
,
M. M.
Hoffman
,
W.
Xie
,
G. L.
Rosen
,
B. J.
Lengerich
,
J.
Israeli
,
J.
Lanchantin
,
S.
Woloszynek
,
A. E.
Carpenter
,
A.
Shrikumar
,
J. B.
Xu
,
E. M
Cofer
,
C. A.
Lavender
,
S. C.
Turaga
,
A. M.
Alexandari
,
Z. Y.
Lu
,
D. J.
Harris
,
D.
DeCaprio
,
Y. J.
Qi
,
A.
Kundaje
,
Y. F.
Peng
,
L. K
Wiley
,
M. H. S.
Segler
,
S. M.
Boca
,
S. J.
Swamidass
,
A.
Huang
,
A.
Gitter
, and
C. S.
Greene
,
J. Royal Soc. Interface
15
,
20170387
(
2018
).
[42]
Z. X.
Cang
,
L.
Mu
, and
G. W.
Wei
,
PLOS Comput. Bio.
14
,
e1005929
, (
2018
).
[43]
Z. X.
Cang
and
G. W.
Wei
,
Int. J. Numer. Meth. Biomed. Eng.
34
,
e2914
(
2018
).
[44]
J.
Jiménez
,
M.
Skalic
,
G.
Martínez-Rosell
, and
G.
De Fabritiis
,
J. Chem. Inform. Model.
58
,
287
(
2018
).
[45]
M.
Karimi
,
D.
Wu
,
Z.
Wang
, and
Y.
Shen
, arXiv:1806.07537, (
2018
).
[46]
A.
Korotcov
,
V.
Tkachenko
,
D. P.
Russo
, and
S.
Ekins
,
Mol. Pharma.
14
,
4462
(
2017
).
[47]
D. D.
Nguyen
,
T.
Xiao
,
M. L.
Wang
, and
G. W.
Wei
,
J. Chem. Inform. Model.
57
,
1715
(
2017
).
[48]
C.
Wang
and
Y.
Zhang
,
J. Comput. Chem.
38
,
169
(
2017
).
[49]
K.
Wu
and
G. W.
Wei
,
J. Chem. Inform. Model.
58
,
520
(
2018
).
[50]
K.
Wu
,
Z.
Zhao
,
R.
Wang
, and
G. W.
Wei
,
J. Comput. Chem.
39
,
1444
(
2018
).
[51]
J.
Wang
,
H.
Cao
,
J. Z.
Zhang
, and
Y.
Qi
,
Sci. Reports
,
8
,
1
(
2018
).
[52]
Z.
Cang
and
G. W.
Wei
,
Bioinformatics
33
,
3549
(
2017
).
[53]
H.
Cao
,
J.
Wang
,
L.
He
,
Y.
Qi
, and
J. Z.
Zhang
,
J. Chem. Inform. Model.
59
,
1508
(
2019
).
[54]
J.
Chen
,
X.
Xu
,
S.
Liu
, and
D. H.
Zhang
,
Phys. Chem. Chem. Phys.
20
,
9090
(
2018
).
[55]
Z.
Wang
,
Y.
Han
,
J.
Li
, and
X.
He
,
J. Phys. Chem. B
124
,
3027
(
2020
).
[56]
J.
Chen
,
Y.
Xu
,
Z.
Cang
,
W.
Geng
, and
G. W.
Wei
, Preprint, (
2021
).
[57]
R. C.
Deo
,
N.
Sonenberg
, and
S. K.
Burley
,
Proc. Natl. Acad. Sci.
98
,
4414
(
2001
).
[58]
D. A.
Case
,
T. E.
Cheatham
,
T.
Darden
,
H.
Gohlke
,
R.
Luo
,
K. M.
Merz
,
A.
Onufriev
and
R. J. C.
Simmerling
,
B.
Wang
, and
A.
Woods
,
J. Comput. Chem.
26
,
1668
(
2005
).
[59]
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
,
Proteins
78
,
1950
(
2010
).
[60]
B.
Roux
and
T.
Simonson
,
Biophys. Chem.
28
,
155
(
1999
).
[62]
D.
Bramer
and
G. W.
Wei
,
J. Chem. Phys.
140
,
054103
(
2018
).
[63]
Z.
Liu
,
Y.
Li
,
L.
Han
,
J.
Liu
,
Z.
Zhao
,
W.
Nie
,
Y.
Liu
, and
R.
Wang
,
Bioinformatics
31
,
405
(
2015
).
[64]
S. LLC
,
Schrödinger Release 2015-2, Schrödinger LLC
,
New York
, (
2015
).
[65]
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graph.
14
,
33
(
1996
).
[66]
W.
Geng
and
G. W.
Wei
,
J. Comput. Phys.
230
,
435
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.