In the past few years, the renormalized excitonic model (REM) approach was developed as an efficient low-scaling ab initio excited state method, which assumes the low-lying excited states of the whole system are a linear combination of various single monomer excitations and utilizes the effective Hamiltonian theory to derive their couplings. In this work, we further extend the REM calculations for the evaluations of first-order molecular properties (e.g. charge population and transition dipole moment) of delocalized ionic or excited states in molecular aggregates, through generalizing the effective Hamiltonian theory to effective operator representation. Results from the test calculations for four different kinds of one dimensional (1D) molecular aggregates (ammonia, formaldehyde, ethylene and pyrrole) indicate that our new scheme can efficiently describe not only the energies but also wavefunction properties of the low-lying delocalized electronic states in large systems.

[1]
J. M.
Herbert
,
X.
Zhang
,
A. F.
Morrison
, and
J.
Liu
,
Acc. Chem. Res.
49
,
931
(
2016
).
[2]
L.
Gonzalez
,
D.
Escudero
, and
L.
Serrano-Andres
,
Chem Phys Chem
13
,
28
(
2012
).
[3]
J. M.
Herbert
,
J. Chem. Phys.
151
,
170901
(
2019
).
[4]
F.
Segatta
,
L.
Cupellini
,
M.
Garavelli
, and
B.
Mennucci
,
Chem. Rev.
119
,
9361
(
2019
).
[5]
[6]
R.
Ghosh
and
F. C.
Spano
,
Acc. Chem. Res.
53
,
2201
(
2020
).
[7]
S. H.
Lim
,
T. G.
Bjorklund
,
F. C.
Spano
, and
C. J.
Bardeen
,
Phys. Rev. Lett.
92
,
107402
(
2004
).
[8]
N. J.
Hestand
,
R. V.
Kazantsev
,
A. S.
Weingarten
,
L. C.
Palmer
,
S. I.
Stupp
, and
F. C.
Spano
,
J. Am. Chem. Soc.
138
,
11762
(
2016
).
[9]
N. J.
Hestand
and
F. C.
Spano
,
Chem. Rev.
118
,
7069
(
2018
).
[10]
X.
Xie
,
A.
Santana-Bonilla
,
W.
Fang
,
C.
Liu
,
A.
Troisi
, and
H.
Ma
,
J. Chem. Theory Comput.
15
,
3721
(
2019
).
[11]
L. V.
Abdurakhimov
,
Y. M.
Bunkov
, and
D.
Konstantinov
,
Phys. Rev. Lett.
114
,
226402
(
2015
).
[12]
J.
Ren
,
Z.
Shuai
, and
G. K. L.
Chan
,
J. Chem. Theory Comput.
14
,
5027
(
2018
).
[13]
M.
Sarovar
,
A.
Ishizaki
,
G. R.
Fleming
, and
K. B.
Whaley
,
Nat. Phys.
6
,
462
(
2010
).
[14]
H.
Zhao
,
Y.
Zhao
,
Y.
Song
,
M.
Zhou
, and
X.
Wang
,
Nat. Commun.
10
,
5589
(
2019
).
[15]
X.
Li
,
R. M.
Parrish
,
F.
Liu
,
S. I. L.
Kokkila Schumacher
, and
T. J.
Martinez
,
J. Chem. Theory Comput.
13
,
3493
(
2017
).
[16]
S.
Nishio
and
Y.
Kurashige
,
J. Chem. Phys.
151
,
084110
(
2019
).
[17]
S.
Canola
,
G.
Bagnara
,
Y.
Dai
,
G.
Ricci
,
A.
Calzolari
, and
F.
Negri
,
J. Chem. Phys.
154
,
124101
(
2021
).
[18]
J. A.
Green
,
H.
Asha
,
F.
Santoro
, and
R.
Improta
,
J. Chem. Theory Comput.
17
,
405
(
2021
).
[19]
J.
Wen
and
H.
Ma
,
Chem. Phys. Lett.
679
,
152
(
2017
).
[20]
T.
Liu
and
A.
Troisi
,
Adv. Mater.
25
,
1038
(
2013
).
[21]
H.
Ma
and
A.
Troisi
,
J. Phys. Chem. C
118
,
27272
(
2014
).
[23]
[24]
C. J.
Morningstar
and
M.
Weinstein
,
Phys. Rev. Lett.
73
,
1873
(
1994
).
[25]
M. A.
Hajj
,
J. P.
Malrieu
, and
N.
Guihéry
,
Phys. Rev. B
72
,
224412
(
2005
).
[26]
H.
Zhang
,
J. P.
Malrieu
,
H.
Ma
, and
J.
Ma
,
J. Comput. Chem.
33
,
34
(
2012
).
[27]
Y.
Ma
,
Y.
Liu
, and
H.
Ma
,
J. Chem. Phys.
136
,
224412
(
2012
).
[28]
Y.
Ma
and
H.
Ma
,
J. Phys. Chem. A
117
,
3655
(
2013
).
[29]
H.
Ma
and
A.
Troisi
,
Adv. Mater.
26
,
6163
(
2014
).
[30]
H.
Ma
.
J. Chem. Phys.
136
,
214501
(
2012
).
[31]
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
 Jr. 
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
N. J.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochter-ski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
,
Gaussian 09, Revision D.01
,
Wallingford, CT
:
Gaussian Inc
., (
2013
).
[32]
T.
Lu
and
F.
Chen
,
J. Comput. Chem.
33
,
580
(
2012
).
[33]
D. G.
Fedorov
and
K.
Kitaura
, in
Modern Methods for Theoretical Physical Chemistry and Biopolymers
,
E. B.
Starikov
,
J. P.
Lewis
, and
S.
Tanaka
Eds.,
Amsterdam
:
Elsevier
,
3
(
2006
).
[34]
S.
Capponi
,
A.
Läuchi
, and
M.
Mambrini
,
Phys. Rev. B
70
,
104424
(
2004
).
[35]
M. S.
Siu
and
M.
Weinstein
,
Phys. Rev. B
75
,
184403
(
2007
).
This content is only available via PDF.
You do not currently have access to this content.