Coherent vibrational dynamics can be observed in atomically precise gold nanoclusters using femtosecond time-resolved pump-probe spectroscopy. It can not only reveal the coupling between electrons and vibrations, but also reflect the mechanical and electronic properties of metal nanoclusters, which holds potential applications in biological sensing and mass detection. Here, we investigated the coherent vibrational dynamics of [Au25(SR)18] nanoclusters by ultrafast spectroscopy and revealed the origins of these coherent vibrations by analyzing their frequency, phase and probe wavelength distributions. Strong coherent oscillations with frequency of 40 cm−1 and 80 cm−1 can be reproduced in the excited state dynamics of [Au25(SR)18]−, which should originate from acoustic vibrations of the Au13 metal core. Phase analysis on the oscillations indicates that the 80 cm−1 mode should arise from the frequency modulation of the electronic states while the 40 cm−1 mode should originate from the amplitude modulation of the dynamic spectrum. Moreover, it is found that the vibration frequencies of [Au25(SR)18] obtained in pump-probe measurements are independent of the surface ligands so that they are intrinsic properties of the metal core. These results are of great value to understand the electron-vibration coupling of metal nanoclusters.

[1]
A. M.
Kelley
,
J. Phys. Chem. Lett.
1
,
1296
(
2010
).
[3]
B.
Yu
,
C.
Zhang
,
L.
Chen
,
X.
Huang
,
Z.
Qin
,
X.
Wang
, and
M.
Xiao
,
J. Chem. Phys.
154
,
214502
(
2021
).
[5]
G. D.
Scholes
and
G.
Rumbles
,
Nat. Mater.
5
,
683
(
2006
).
[6]
D. M.
Mittleman
,
R. W.
Schoenlein
,
J. J.
Shiang
,
V. L.
Colvin
,
A. P.
Alivisatos
, and
C. V.
Shank
,
Phy. Rev. B
49
,
14435
(
1994
).
[7]
S.
Link
and
M. A.
El-Sayed
,
Annu. Rev. Phys. Chem.
54
,
331
(
2003
).
[8]
D. M.
Sagar
,
R. R.
Cooney
,
S. L.
Sewall
,
E. A.
Dias
,
M. M.
Barsan
,
I. S.
Butler
, and
P.
Kambhampati
,
Phys. Rev. B
77
,
235321
(
2008
).
[9]
D. V.
Melnikov
and
W. B.
Fowler
,
Phys. Rev. B
64
,
245320
(
2001
).
[10]
[11]
M. J.
Fernée
,
B. N.
Littleton
,
S.
Cooper
,
H.
Rubinsztein-Dunlop
,
D. E.
Gómez
, and
P.
Mulvaney
,
J. Phys. Chem. C
112
,
1878
(
2008
).
[12]
D. M.
Sagar
,
R. R.
Cooney
,
S. L.
Sewall
, and
P.
Kambhampati
,
J. Phys. Chem. C
112
,
9124
(
2008
).
[13]
M. Y.
Sfeir
,
H.
Qian
,
K.
Nobusada
, and
R.
Jin
,
J. Phys. Chem. C
115
,
6200
(
2011
).
[14]
M. S.
Devadas
,
S.
Bairu
,
H.
Qian
,
E.
Sinn
,
R.
Jin
, and
G.
Ramakrishna
,
J. Phys. Chem. Lett.
2
,
2752
(
2011
).
[15]
L.
Ni
,
U.
Huynh
,
A.
Cheminal
,
T. H.
Thomas
,
R.
Shivanna
,
T. F.
Hinrichsen
,
S.
Ahmad
,
A.
Sadhanala
, and
A.
Rao
,
ACS Nano
11
,
10834
(
2017
).
[16]
Z.
Liu
,
Y.
Li
,
W.
Shin
, and
R.
Jin
,
J. Phys. Chem. Lett.
12
,
1690
(
2021
).
[17]
M.
Kato
,
Y.
Shichibu
,
K.
Ogura
,
M.
Iwasaki
,
M.
Sugiuchi
,
K.
Konishi
, and
I.
Yagi
,
J. Phys. Chem. Lett.
11
,
7996
(
2020
).
[18]
H.
Lange
,
M.
Artemyev
,
U.
Woggon
,
T.
Niermann
, and
C.
Thomsen
,
Phys. Rev. B
77
,
193303
(
2008
).
[19]
M.
Zhou
,
R.
Jin
,
M. Y.
Sfeir
,
Y.
Chen
,
Y.
Song
, and
R.
Jin
,
Proc. Natl. Acad. Sci. USA
114
,
E4697
(
2017
).
[20]
C.
Fei
,
J. S.
Sarmiento
, and
H.
Wang
,
J. Phys. Chem. C
122
,
17035
(
2018
).
[21]
J. H.
Hodak
,
A.
Henglein
, and
G. V.
Hartland
,
J. Chem. Phys.
111
,
8613
(
1999
).
[22]
A. M.
Kelley
,
J. Chem. Phys.
151
,
140901
(
2019
).
[23]
R.
Jin
,
C.
Zeng
,
M.
Zhou
, and
Y.
Chen
,
Chem. Rev.
116
,
10346
(
2016
).
[24]
[25]
T.
Stoll
,
E.
Sgrò
,
J. W.
Jarrett
,
J.
Réhault
,
A.
Oriana
,
L.
Sala
,
F.
Branchi
,
G.
Cerullo
, and
K. L.
Knappenberger
,
J. Am. Chem. Soc.
138
,
1788
(
2016
).
[27]
M.
Zhou
,
S.
Long
,
X.
Wan
,
Y.
Li
,
Y.
Niu
,
Q.
Guo
,
Q. M.
Wang
, and
A.
Xia
,
Phys. Chem. Chem. Phys.
16
,
18288
(
2014
).
[28]
M.
Zhou
,
C.
Zeng
,
Y.
Song
,
J. W.
Padelford
,
G.
Wang
,
M. Y.
Sfeir
,
T.
Higaki
, and
R.
Jin
,
Angew. Chem. Int. Ed.
56
,
16257
(
2017
).
[29]
C.
Yi
,
H.
Zheng
,
P. J.
Herbert
,
Y.
Chen
,
R.
Jin
, and
K. L.
Knappenberger
,
J. Phys. Chem. C
121
,
24894
(
2017
).
[30]
P.
Maioli
,
T.
Stoll
,
H. E.
Sauceda
,
I.
Valencia
,
A.
Demessence
,
F.
Bertorelle
,
A.
Crut
,
F.
Vallee
,
I. L.
Garzon
,
G.
Cerullo
, and
N.
Del Fatti
,
Nano Lett.
18
,
6842
(
2018
).
[31]
M.
Pelton
,
J. E.
Sader
,
J.
Burgin
,
M.
Liu
,
P.
Guyot-Sionnest
, and
D.
Gosztola
,
Nat. Nanotechnol.
4
,
492
(
2009
).
[32]
M.
Zhou
and
Y.
Song
,
J. Phys. Chem. Lett.
12
,
1514
(
2021
).
[33]
M.
Zhou
,
T.
Higaki
,
Y.
Li
,
C.
Zeng
,
Q.
Li
,
M. Y.
Sfeir
, and
R.
Jin
,
J. Am. Chem. Soc.
141
,
19754
(
2019
).
[34]
D. e.
Jiang
,
M.
Khn
,
Q.
Tang
, and
F.
Weigend
,
J. Phys. Chem. Lett.
5
,
3286
(
2014
).
[35]
S.
Nomura
and
T.
Kobayashi
,
Phys. Rev. B
45
,
1305
(
1992
).
[36]
H.
Qian
,
M. Y.
Sfeir
, and
R.
Jin
,
J. Phys. Chem. C
114
,
19935
(
2010
).
[37]
A.
Tlahuice-Flores
,
R. L.
Whetten
, and
M.
Jose-Yacaman
,
J. Phys. Chem. C
117
,
12191
(
2013
).
[38]
F.
Vialla
and
N. D.
Fatti
,
Nanomaterials
10
,
2543
(
2020
).
[39]
C.
Voisin
,
N.
Del Fatti
,
D.
Christofilos
, and
F.
Vallee
,
Appl. Surf. Sci.
164
,
131
(
2000
).
[40]
C. J.
Bardeen
,
Q.
Wang
, and
C. V.
Shank
,
Phys. Rev. Lett.
75
,
3410
(
1995
).
[41]
H. J.
Zeiger
,
J.
Vidal
,
T. K.
Cheng
,
E. P.
Ippen
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
45
,
768
(
1992
).
[42]
O.
Varnavski
,
G.
Ramakrishna
,
J.
Kim
,
D.
Lee
, and
T.
Goodson
III
,
ACS Nano
4
,
3406
(
2010
).
This content is only available via PDF.
You do not currently have access to this content.