LASP (large-scale atomistic simulation with neural network potential) software developed by our group since 2018 is a powerful platform (www.lasphub.com) for performing atomic simulation of complex materials. The software integrates the neural network (NN) potential technique with the global potential energy surface exploration method, and thus can be utilized widely for structure prediction and reaction mechanism exploration. Here we introduce our recent update on the LASP program version 3.0, focusing on the new functionalities including the advanced neural network training based on the multi-network framework, the newly-introduced S7 and S8 power type structure descriptor (PTSD). These new functionalities are designed to further improve the accuracy of potentials and accelerate the neural network training for multiple-element systems. Taking Cu-C-H-O neural network potential and a heterogeneous catalytic model as the example, we show that these new functionalities can accelerate the training of multi-element neural network potential by using the existing single-network potential as the input. The obtained double-network potential CuCHO is robust in simulation and the introduction of S7 and S8 PTSDs can reduce the root-mean-square errors of energy by a factor of two.

[1]
A. P.
Bartók
and
G.
Csányi
,
Int. J. Quantum Chem.
115
,
1051
(
2015
).
[2]
H.
Wang
,
L.
Zhang
,
J.
Han
, and W. E,
Comput. Phys. Commun.
228
,
178
(
2018
).
[3]
K. T.
Schütt
,
H. E.
Sauceda
,
P. J.
Kindermans
,
A.
Tkatchenko
, and
K. R.
Müller
,
J. Chem. Phys.
148
,
241722
(
2018
).
[4]
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
,
Chem. Sci.
8
,
3192
(
2017
).
[5]
A.
Khorshidi
and
A. A.
Peterson
,
Comput. Phys. Commun.
207
,
310
(
2016
).
[6]
F. A.
Faber
,
A. S.
Christensen
,
B.
Huang
, and
O. A. v.
Lilienfeld
,
J. Chem. Phys.
148
,
241717
(
2018
).
[7]
S. D.
Huang
,
C.
Shang
,
P. L.
Kang
,
X. J.
Zhang
, and
Z. P.
Liu
,
WIREs Comput. Mol. Sci.
9
,
e1415
(
2019
).
[8]
S. D.
Huang
,
C.
Shang
,
X. J.
Zhang
, and
Z. P.
Liu
,
Chem. Sci.
8
,
6327
(
2017
).
[9]
S.
Ma
,
C.
Shang
,
C. M.
Wang
, and
Z. P.
Liu
,
Chem. Sci.
11
,
10113
(
2020
).
[10]
Y.
Zhu
,
J.
He
,
C.
Shang
,
X.
Miao
,
J.
Huang
,
Z.
Liu
,
H.
Chen
, and
Y.
Han
,
J. Am. Chem. Soc.
136
,
12746
(
2014
).
[11]
X. T.
Li
,
L.
Chen
,
C.
Shang
, and
Z. P.
Liu
,
J. Am. Chem. Soc.
143
,
6281
(
2021
).
[12]
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
[13]
Y.
Zhang
,
C.
Hu
, and
B.
Jiang
,
J. Phys. Chem. Lett.
10
,
4962
(
2019
).
[14]
S. D.
Huang
,
C.
Shang
,
P. L.
Kang
, and
Z. P.
Liu
,
Chem. Sci.
9
,
8644
(
2018
).
[15]
C.
Shang
,
S. D.
Huang
, and
Z. P.
Liu
,
J. Comput. Chem.
40
,
1091
(
2019
).
[16]
X.
Xie
,
K. A.
Persson
, and
D. W.
Small
,
J. Chem. Theory Comput.
16
,
4256
(
2020
).
[17]
T. W.
Ko
,
J. A.
Finkler
, and
S.
Goedecker
,
J.
Behler
,
Acc. Chem. Res.
54
,
808
(
2021
).
[18]
LASP Software. www.lasphub.com
[19]
C.
Shang
,
X. J.
Zhang
, and
Z. P.
Liu
,
Phys. Chem. Chem. Phys.
16
,
17845
(
2014
).
[20]
C.
Shang
and
Z. P.
Liu
,
J. Chem. Theory Comput.
9
,
1838
(
2013
).
[21]
C.
Shang
and
Z. P.
Liu
,
J. Chem. Theory Comput.
6
,
1136
(
2010
).
[22]
X. J.
Zhang
,
C.
Shang
, and
Z. P.
Liu
,
J. Chem. Theory Comput.
9
,
5745
(
2013
).
[23]
D.
Frenkel
and
B.
Smit
, In
Understanding Molecular Simulation (Second Edition)
,
D.
Frenkel
and
B.
Smit
, Eds.,
San Diego
:
Academic Press
,
139
(
2002
).
[24]
N.
Shuichi
,
Prog. Theor. Phys. Suppl.
103
,
1
(
1991
).
[25]
M.
Parrinello
and
A.
Rahman
,
Phys. Rev. Lett.
45
,
1196
(
1980
).
[26]
T. D.
Kühne
,
M.
Iannuzzi
,
M. D.
Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N. G.
Holmberg
,
K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
,
J. Chem. Phys.
152
,
194103
(
2020
).
[27]
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys: Condens Matter.
21
,
395502
(
2009
).
[28]
Y.
Zhang
,
C.
Hu
, and
B.
Jiang
,
Phys. Chem. Chem. Phys.
23
,
1815
(
2021
).
[29]
B. N.
Zope
,
D. D.
Hibbitts
,
M.
Neurock
, and
R. J.
Davis
,
Science
330
,
74
(
2010
).
[30]
C. H. C.
Zhou
,
J. N.
Beltramini
,
Y. X.
Fan
, and
G. Q. M.
Lu
,
Chem. Soc. Rev.
37
,
527
(
2008
).
[31]
J.
ten Dam
and
U.
Hanefeld
,
Chemsuschem
4
,
1017
(
2011
).
[32]
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
[33]
G.
Kresse
and
J.
Furthmller
,
Phys. Rev B
54
,
11169
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.