The generalized quantum master equation (GQME) provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment. Dynamics of open quantum systems is important in excitation energy, charge, and quantum coherence transfer as well as reactive photochemistry. The system is usually chosen to be the interested degrees of freedom such as the electronic states in light-harvesting molecules or tagged vibrational modes in a condensed-phase system. The environment is also called the bath, whose influence on the system has to be considered, and for instance can be described by the GQME formalisms using the projection operator technique. In this review, we provide a heuristic description of the development of two canonical forms of GQME, namely the time-convoluted Nakajima-Zwanzig form (NZ-GQME) and the time-convolutionless form (TCL-GQME). In the more popular NZ-GQME form, the memory kernel serves as the essential part that reflects the non-Markovian and non-perturbative effects, which gives formally exact dynamics of the reduced density matrix. We summarize several schemes to express the projection-based memory kernel of NZ-GQME in terms of projection-free time correlation function inputs that contain molecular information. In particular, the recently proposed modified GQME approach based on NZ-GQME partitions the Hamiltonian into a more general diagonal and off-diagonal parts. The projection-free inputs in the above-mentioned schemes expressed in terms of different system-dependent time correlation functions can be calculated via numerically exact or approximate dynamical methods. We hope this contribution would help lower the barrier of understanding the theoretical pillars for GQME-based quantum dynamics methods and also envisage that their combination with the quantum computing techniques will pave the way for solving complex problems related to quantum dynamics and quantum information that are currently intractable even with today’s state-of-the-art classical supercomputers.

[1]
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
,
Oxford
:
Oxford University Press, (2007
).
[2]
A.
Rivas
and
S. F.
Huelga
,
Open Quantum Systems
,
Berlin
:
Springer
, (
2012
).
[3]
H.
Carmichael
,
An Open Systems Approach to Quantum Optics
,
Heidelberg
:
Springer
, (
1993
).
[4]
J. M.
Dominy
,
A.
Shabani
, and
D. A.
Lidar
,
Quantum Inf. Processing
15
,
465
(
2015
).
[5]
G.
Garćıa-Pérez
,
M. A. C.
Rossi
, and
S.
Maniscalco
,
npj Quantum Inf.
6
,
1
(
2020
).
[6]
B.
Bylicka
,
M.
Tukiainen
,
D.
Chrúsciński
,
J.
Piilo
, and
S.
Maniscalco
,
Sci. Rep.
6
,
27989
(
2016
).
[7]
R.
Kosloff
,
J. Chem. Phys.
150
,
204105
(
2019
).
[8]
V.
Semin
and
F.
Petruccione
,
Sci. Rep.
10
,
2607
(
2020
).
[9]
W.
Dou
,
J.
Bätge
,
A.
Levy
, and
M.
Thoss
,
Phys. Rev. B
101
,
184304
(
2020
).
[10]
J.
Cao
,
R. J.
Cogdell
,
D. F.
Coker
,
H. G.
Duan
,
J.
Hauer
,
U.
Kleinekathöfer
,
T. L. C.
Jansen
,
T.
Mančal
,
R. J. D.
Miller
,
J. P.
Ogilvie
,
V. I.
Prokhorenko
,
T.
Renger
,
H. S.
Tan
,
R.
Tempelaar
,
M.
Thorwart
,
E.
Thyrhaug
,
S.
Westenhoff
, and
D.
Zigmantas
,
Sci. Adv.
6
,
eaaz4888
(
2020
).
[11]
A.
Marais
,
B.
Adams
,
A. K.
Ringsmuth
,
M.
Ferretti
,
J. M.
Gruber
,
R.
Hendrikx
,
M.
Schuld
,
S. L.
Smith
,
I.
Sinayskiy
,
T. P. J.
Krüger
,
F.
Petruccione
, and
R.
van Grondelle
,
J. Royal Soc. Interface
15
,
20180640
(
2018
).
[12]
Y.
Chu
,
J. D.
Pritchard
,
H.
Wang
, and
M.
Weides
,
App. Phys. Lett.
118
,
240401
(
2021
).
[13]
U.
Weiss
,
Quantum Dissipative Systems
,
London
:
World scientific
, (
2012
).
[14]
I.
de Vega
and
D.
Alonso
,
Rev. Mod. Phys.
89
,
015001
(
2017
).
[15]
H. P.
Breuer
,
J.
Gemmer
, and
M.
Michel
,
Phys. Rev. E
73
,
016139
(
2006
).
[16]
A.
Smirne
,
N.
Megier
, and
B.
Vacchini
,
Quantum
5
,
439
(
2021
).
[17]
H.
Weimer
,
A.
Kshetrimayum
, and
R.
Orús
,
Rev. Mod. Phys.
93
,
015008
(
2021
).
[18]
W.
Pauli
,
Probleme der Modernen Physik
,
30
(
1928
).
[19]
F.
Bloch
,
Phys. Rev.
105
,
1206
(
1957
).
[20]
A. G.
Redfield
,
IBM J. Rev. Dev.
1
,
19
(
1957
).
[21]
V.
Gorini
,
A.
Kossakowski
, and
E. C. G.
Sudarshan
,
J. Math. Phys.
17
,
821
(
1976
).
[22]
G.
Lindblad
,
Comm. Math. Phys.
48
,
119
(
1976
).
[23]
L.
van Hove
,
Physica
21
,
517
(
1954
).
[24]
[25]
S.
Nakajima
,
Prog. Theor. Phys.
20
,
948
(
1958
).
[26]
R.
Zwanzig
,
J. Chem. Phys.
33
,
1338
(
1960
).
[27]
E. W.
Montroll
, Fundamental Problems in Statistical Mechanics,
Boulder
:
Interscience Publishers
,
230
249
(
1962
). Lecture notes can be found through https://babel.hathitrust.org/.
[28]
R. W.
Zwanzig
,
Annu. Rev. Phys. Chem.
16
,
67
(
1964
).
[29]
D. T.
Haar
,
Rep. Prog. Phys.
24
,
304
(
1961
).
[30]
P.
Ŕesibois
,
Physica
27
,
541
(
1961
).
[31]
I.
Prigogine
and
P.
Résibois
,
Physica
27
,
629
(
1961
).
[32]
R. J.
Swenson
,
J. Math. Phys.
3
,
1017
(
1962
).
[33]
R. J.
Swenson
,
J. Math. Phys.
4
,
544
(
1963
).
[34]
R. L.
Peterson
and
P. M.
Quay
,
J. Math. Phys.
5
,
85
(
1964
).
[35]
J.
Weinstock
,
Phys. Rev.
136
,
A879
(
1964
).
[36]
J.
Weinstock
,
Phys. Rev.
140
,
A98
(
1965
).
[37]
P.
Resibois
,
Physica
29
,
721
(
1963
).
[38]
L. V.
Hove
and
E.
Verboven
,
Physica
27
,
418
(
1961
).
[39]
A.
Janner
,
L. V.
Hove
, and
E.
Verboven
,
Physica
28
,
1341
(
1962
).
[40]
E.
Verboven
and
L.
Buyst
,
Physica
29
,
653
(
1963
).
[41]
G. V.
Chester
,
Rep. Prog. Phys.
26
,
411
(
1963
).
[42]
I.
Prigogine
,
C.
George
, and
F.
Henin
,
Physica
45
,
418
(
1969
).
[43]
A.
Fuliński
,
Phys. Lett. A
24
,
63
(
1967
).
[44]
T.
Geszti
,
Phys. Lett. A
25
,
12
(
1967
).
[45]
A.
Fuliński
,
Phys. Lett. A
25
,
13
(
1967
).
[46]
T.
Shimizu
,
J. Phys. Soc. Jpn.
28
,
1088
(
1970
).
[47]
A. R.
Altenberger
and
J.
Stecki
,
J. Stat. Phys.
5
,
83
(
1972
).
[48]
M.
Tokuyama
and
H.
Mori
,
Prog. Theor. Phys.
55
,
411
(
1976
).
[49]
N.
Hashitsumae
,
F.
Shibata
, and
M.
Shingū
,
J. Stat. Phys.
17
,
155
(
1977
).
[50]
F.
Shibata
,
Y.
Takahashi
, and
N.
Hashitsume
,
J. Stat. Phys.
17
,
171
(
1977
).
[51]
A.
Fuliński
,
Physica A
92
,
198
(
1978
).
[52]
F.
Shibata
and
T.
Arimitsu
,
J. Phys. Soc. Jpn.
49
,
891
(
1980
).
[53]
N.
Mishima
and
T. Y.
Petrosky
,
J. Math. Phys.
19
,
1087
(
1978
).
[54]
S.
Mukamel
,
I.
Oppenheim
, and
J.
Ross
,
Phys. Rev. A
17
,
1988
(
1978
).
[55]
V.
Čápek
and
J.
Pěrina
,
Physica A
215
,
209
(
1995
).
[56]
C.
Meier
and
D. J.
Tannor
,
J. Chem. Phys.
111
,
3365
(
1999
).
[57]
W. H.
Miller
,
Proc. Natl. Acad. Sci. USA
102
,
6660
(
2005
).
[58]
W. H.
Miller
,
J. Chem. Phys.
125
,
132305
(
2006
).
[59]
X.
Gao
and
A.
Eisfeld
,
J. Chem. Phys.
150
,
234115
(
2019
).
[60]
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
434
,
625
(
2005
).
[61]
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mančal
,
Y. C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
446
,
782
(
2007
).
[62]
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
[63]
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234110
(
2009
).
[64]
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. USA
106
,
17255
(
2009
).
[65]
M. K.
Lee
and
D. F.
Coker
,
J. Phys. Chem. Lett.
7
,
3171
(
2016
).
[66]
P.
Rebentrost
and
A.
Aspuru-Guzik
,
J. Chem. Phys.
134
,
101103
(
2011
).
[67]
A.
Chenu
and
G. D.
Scholes
,
Annu. Rev. Phys. Chem.
66
,
69
(
2015
).
[68]
E.
Mulvihill
,
K. M.
Lenn
,
X.
Gao
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
,
J. Chem. Phys.
154
,
204109
(
2021
).
[69]
A.
Kelly
,
J. Chem. Phys.
150
,
204107
(
2019
).
[70]
T. P.
Fay
and
D. E.
Manolopoulos
,
J. Chem. Phys.
150
,
151102
(
2019
).
[71]
A. J.
Schile
and
D. T.
Limmer
,
J. Chem. Phys.
151
,
014106
(
2019
).
[72]
S.
Choi
and
J.
Vaníčcek
,
J. Chem. Phys.
153
,
1
(
2020
).
[73]
A.
Semenov
and
A.
Nitzan
,
J. Chem. Phys.
150
,
174122
(
2019
).
[74]
S. Y.
Kilin
and
A. P.
Nizovtsev
,
J. Phys. B
19
,
3457
(
1986
).
[75]
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
,
New York
:
Oxford University Press
, (
1995
).
[76]
J. H.
Fetherolf
and
T. C.
Berkelbach
,
J. Chem. Phys.
147
,
244109
(
2017
).
[77]
A.
Levy
,
E.
Rabani
, and
D. T.
Limmer
,
Phys. Rev. Research
3
,
023252
(
2021
).
[78]
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
119
,
12063
(
2003
).
[79]
M. L.
Zhang
,
B. J.
Ka
, and
E.
Geva
,
J. Chem. Phys.
125
,
044106
(
2006
).
[80]
W. C.
Pfalzgraff
,
A.
Kelly
, and
T. E.
Markland
,
J. Phys. Chem. Lett.
6
,
4743
(
2015
).
[81]
L.
Kidon
,
E. Y.
Wilner
, and
E.
Rabani
,
J. Chem. Phys.
143
,
234110
(
2015
).
[82]
A.
Montoya-Castillo
and
D. R.
Reichman
,
J. Chem. Phys.
144
,
184104
(
2016
).
[83]
A.
Montoya-Castillo
and
D. R.
Reichman
,
J. Chem. Phys.
146
,
084110
(
2017
).
[84]
E.
Mulvihill
,
A.
Schubert
,
X.
Sun
,
B. D.
Dunietz
, and
E.
Geva
,
J. Chem. Phys.
150
,
034101
(
2019
).
[85]
E.
Mulvihill
,
X.
Gao
,
Y.
Liu
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
,
J. Chem. Phys.
151
,
074103
(
2019
).
[86]
E.
Mulvihill
,
Simulating Electronically Nonadiabatic Dynamics via the Generalized Quantum Master Equation
, Ph.D. thesis,
University of Michigan
(
2021
).
[87]
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
,
New York
:
Oxford University Press
, Chap. 6, (
2001
).
[88]
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
,
New York
:
Oxford University Press
, Chap. 3, (
1995
).
[89]
U.
Fano
,
Phys. Rev.
131
,
259
(
1963
).
[90]
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
[91]
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II, Nonequilibrium Statistical Mechanics
,
Berlin
:
Springer Verlag
, (
1983
).
[92]
B.
Vacchini
,
Phys. Rev. A
87
,
030101
(
2013
).
[93]
A.
Gelzinis
,
E.
Rybakovas
, and
L.
Valkunas
,
J. Chem. Phys.
147
,
234108
(
2017
).
[94]
G.
Nan
,
X.
Yang
,
L.
Wang
,
Z.
Shuai
, and
Y.
Zhao
,
Phys. Rev. B
79
,
115203
(
2009
).
[95]
L.
Kidon
,
H.
Wang
,
M.
Thoss
, and
E.
Rabani
,
J. Chem. Phys.
149
,
104105
(
2018
).
[96]
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
120
,
10647
(
2004
).
[97]
E.
Mulvihill
and
E.
Geva
,
J. Phys. Chem. B
125
,
9834
(
2021
).
[98]
P.
Pechukas
,
Phys. Rev. Lett.
73
,
1060
(
1994
).
[99]
T. M.
Chang
and
J.
Skinner
,
Physica A
193
,
483
(
1993
).
[100]
H. P.
Breuer
,
B.
Kappler
, and
F.
Petruccione
,
Ann. Phys.
291
,
36
(
2001
).
[101]
I.
de Vega
and
D.
Alonso
,
Phys. Rev. A
73
,
015001
(
2006
).
[102]
N.
Tezak
,
N. H.
Amini
, and
H.
Mabuchi
,
Phys. Rev. A
96
,
062113
(
2017
).
[103]
S.
Valleau
,
A.
Eisfeld
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
137
,
224103
(
2012
).
[104]
Z.
Gong
,
Z.
Tang
,
J.
Cao
, and
J.
Wu
,
Chin. J. Chem. Phys.
31
,
421
(
2018
).
[105]
N.
Megier
,
A.
Smirne
, and
B.
Vacchini
,
New J. Phys.
22
,
083011
(
2020
).
[106]
S.
Scali
,
J.
Anders
, and
L. A.
Correa
,
Quantum
5
,
451
(
2021
).
[107]
B. L.
Hu
,
J. P.
Paz
, and
Y.
Zhang
,
Phys. Rev. D
45
,
2843
(
1992
).
[108]
G.
Homa
,
A.
Csordás
,
M. A.
Csirik
, and
J. Z.
Bernád
,
Phys. Rev. A
102
,
022206
(
2020
).
[109]
Moldoveanu
,
Manolescu
, and
Gudmundsson
,
Entropy
21
,
731
(
2019
).
[110]
M. S.
Ferguson
,
O.
Zilberberg
, and
G.
Blatter
,
Phys. Rev. Res.
3
,
023127
(
2021
).
[111]
X.
Liu
and
J.
Liu
,
J. Chem. Phys.
148
,
102319
(
2018
).
[112]
A.
Ishizaki
and
Y.
Tanimura
,
Chem. Phys.
347
,
185
(
2008
).
[113]
Y.
Liu
,
Y.
Yan
,
M.
Xu
,
K.
Song
, and
Q.
Shi
,
Chin. J. Chem. Phys.
31
,
575
(
2018
).
[114]
M. G.
Mavros
and
T. V.
Voorhis
,
J. Chem. Phys.
141
,
054112
(
2014
).
[115]
C. C.
Chen
and
H. S.
Goan
,
Phys. Rev. A
93
,
032113
(
2016
).
[116]
M.
Sparpaglione
and
S.
Mukamel
,
J. Chem. Phys.
88
,
3263
(
1988
).
[117]
G. A.
Baker
and
J.
Gammel
,
The Padé Approximant in Theoretical Physics
,
Cambridge
:
Cambridge University Press
, (
1970
).
[118]
M.
Cho
and
R. J.
Silbey
,
J. Chem. Phys.
106
,
2654
(
1997
).
[119]
J.
Shao
and
N.
Makri
,
Chem. Phys.
268
,
1
(
2001
).
[120]
Y.
Sato
,
J. Chem. Phys.
150
,
224108
(
2019
).
[121]
S.
Chatterjee
and
N.
Makri
,
J. Phys. Chem. B
123
,
10470
(
2019
).
[122]
N.
Makri
,
J. Chem. Phys.
146
,
134101
(
2017
).
[123]
G.
Cohen
and
E.
Rabani
,
Phys. Rev. B
84
,
075150
(
2011
).
[124]
G.
Cohen
,
E.
Gull
,
D. R.
Reichman
,
A. J.
Millis
, and
E.
Rabani
,
Phys. Rev. B
87
,
195108
(
2013
).
[125]
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
[126]
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
[127]
Y.
Tanimura
,
J. Chem. Phys.
153
,
020901
(
2020
).
[128]
T.
Ikeda
and
G. D.
Scholes
,
J. Chem. Phys.
152
,
204101
(
2020
).
[129]
J.
Prior
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
105
,
050404
(
2010
).
[130]
M.
Aghtar
,
J.
Liebers
,
J.
Strümpfer
,
K.
Schulten
, and
U.
Kleinekathöfer
,
J. Chem. Phys.
136
,
214101
(
2012
).
[131]
A.
Baiardi
and
M.
Reiher
,
J. Chem. Phys.
152
,
040903
(
2020
).
[132]
X.
Xie
,
Y.
Liu
,
Y.
Yao
,
U.
Schollwöck
,
C.
Liu
, and
H.
Ma
,
J. Chem. Phys.
151
,
224101
(
2019
).
[133]
Y. C.
Wang
and
Y.
Zhao
,
Chin. J. Chem. Phys.
33
,
653
(
2020
).
[134]
H. D.
Meyer
,
U.
Manthe
, and
L.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
[135]
H.
Wang
and
M.
Thoss
,
J. Phys. Chem. A
111
,
10369
(
2007
).
[136]
H. D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
[137]
[138]
H. D.
Meyer
and
H.
Wang
,
J. Chem. Phys.
148
,
124105
(
2018
).
[139]
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
[140]
H.
Wang
,
J. Phys. Chem. A
119
,
7951
(
2015
).
[141]
I. V.
Oseledets
,
SIAM J Sci. Comput.
33
,
2295
(
2011
).
[142]
S. M.
Greene
and
V. S.
Batista
,
J. Chem. Theory Comput.
13
,
4034
(
2017
).
[143]
F. A.
Pollock
and
K.
Modi
,
Quantum
2
,
76
(
2018
).
[144]
R.
Borrelli
,
J. Chem. Phys.
150
,
234102
(
2019
).
[145]
J.
Cerrillo
and
J.
Cao
,
Phys. Rev. Lett.
112
,
110401
(
2014
).
[146]
A. A.
Kananenka
,
C. Y.
Hsieh
,
J.
Cao
, and
E.
Geva
,
J. Phys. Chem. Lett.
7
,
4809
(
2016
).
[147]
O. V.
Prezhdo
and
P. J.
Rossky
,
J. Chem. Phys.
107
,
825
(
1997
).
[148]
A.
Kelly
,
A.
Montoya-Castillo
,
L.
Wang
, and
T. E.
Markland
,
J. Chem. Phys.
144
,
184105
(
2016
).
[149]
Q.
Shi
and
E.
Geva
,
J. Chem. Phys
121
,
3393
(
2004
).
[150]
A. A.
Kananenka
,
C. Y.
Hsieh
,
J.
Cao
, and
E.
Geva
,
J. Phys. Chem. Lett.
9
,
319
(
2018
).
[151]
W. C.
Pfalzgraff
,
A.
Montoya-Castillo
,
A.
Kelly
, and
T. E.
Markland
,
J. Chem. Phys.
150
,
244109
(
2019
).
[152]
P.
Ehrenfest
,
Z. Phys.
45
,
455
(
1927
).
[153]
A. D.
McLachlan
,
Mol. Phys.
8
,
39
(
1964
).
[154]
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
[155]
R. X.
Xu
and
Y.
Yan
,
Phys. Rev. E
75
,
031107
(
2007
).
[156]
M.
Xu
,
Y.
Yan
,
Y.
Liu
, and
Q.
Shi
,
J. Chem. Phys.
148
,
164101
(
2018
).
[157]
R. D.
Coalson
,
J. Chem. Phys.
94
,
1108
(
1991
).
[158]
S.
Shim
,
P.
Rebentrost
,
S.
Valleau
, and
A.
Aspuru-Guzik
,
Biophysical J.
102
,
649
(
2012
).
[159]
H. B.
Chen
,
N.
Lambert
,
Y. C.
Cheng
,
Y. N.
Chen
, and
F.
Nori
,
Sci. Rep.
5
,
12753
(
2015
).
[160]
M. L.
Chaillet
,
F.
Lengauer
,
J.
Adolphs
,
F.
Müh
,
A. S.
Fokas
,
D. J.
Cole
,
A. W.
Chin
, and
T.
Renger
,
J. Phys. Chem. Lett.
11
,
10306
(
2020
).
[161]
Y.
Yan
,
M.
Xu
,
Y.
Liu
, and
Q.
Shi
,
J. Chem. Phys.
150
,
234101
(
2019
).
[162]
M. K.
Lee
,
P.
Huo
, and
D. F.
Coker
,
Annu. Rev. Phys. Chem.
67
,
639
(
2016
).
[163]
X.
Sun
and
E.
Geva
,
J. Chem. Phys.
144
,
044106
(
2016
).
[164]
P. L.
Walters
,
T. C.
Allen
, and
N.
Makri
,
J. Comput. Chem.
38
,
110
(
2017
).
[165]
Z.
Tong
,
Z.
Huai
,
Y.
Mei
, and
Y.
Mo
,
J. Chem. Phys.
152
,
135101
(
2020
).
[166]
D.
Brian
,
Z.
Liu
,
B. D.
Dunietz
,
E.
Geva
, and
X.
Sun
,
J. Chem. Phys.
154
,
174105
(
2021
).
[167]
U.
Kleinekathöfer
,
J. Chem. Phys.
121
,
2505
(
2004
).
[168]
G.
Ritschel
and
A.
Eisfeld
,
J. Chem. Phys.
141
,
094101
(
2014
).
[169]
D.
Xu
and
K.
Schulten
,
Chem. Phys.
182
,
91
(
1994
).
[170]
J.
Adolphs
and
T.
Renger
,
Biophys. J.
91
,
2778
(
2006
).
[171]
A.
Ishizaki
and
G. R.
Fleming
,
Annu. Rev. Condens. Matter Phys.
3
,
333
(
2012
).
[172]
X.
Sun
and
E.
Geva
,
J. Phys. Chem. A
120
,
2976
(
2016
).
[173]
T. C.
Berkelbach
,
T. E.
Markland
, and
D. R.
Reichman
,
J. Chem. Phys.
136
,
084104
(
2012
).
[174]
T. C.
Berkelbach
,
D. R.
Reichman
, and
T. E.
Markland
,
J. Chem. Phys.
136
,
034113
(
2012
).
[175]
A.
Pereverzev
,
E. R.
Bittner
, and
I.
Burghardt
,
J. Chem. Phys.
131
,
034104
(
2009
).
[176]
Z.
Tong
,
X.
Gao
,
M. S.
Cheung
,
B. D.
Dunietz
,
E.
Geva
, and
X.
Sun
,
J. Chem. Phys.
153
,
044105
(
2020
).
[177]
Z.
Hu
,
D.
Brian
, and
X.
Sun
,
J. Chem. Phys.
in press, (
2021
).
[178]
P. P.
Mazza
,
D.
Zietlow
,
F.
Carollo
,
S.
Andergassen
,
G.
Martius
, and
I.
Lesanovsky
,
Phys. Rev. Res.
3
,
023084
(
2021
).
[179]
G.
Carleo
and
M.
Troyer
,
Science
355
,
602
(
2017
).
[180]
M. J.
Hartmann
and
G.
Carleo
,
Phys. Rev. Lett.
122
,
250502
(
2019
).
[181]
A.
Nagy
and
V.
Savona
,
Phys. Rev. Lett.
122
,
250501
(
2019
).
[182]
M.
Schuld
,
I.
Sinayskiy
, and
F.
Petruccione
,
Physics
12
,
74
(
2019
).
[183]
Z.
Liu
,
L. M.
Duan
, and
D. L.
Deng
, arXiv preprint arXiv:2008.05488 (
2020
).
[184]
L. E. H.
Rodríguez
and
A. A.
Kananenka
,
J. Phys. Chem. Lett.
12
,
2476
(
2021
).
[185]
M.
Kulichenko
,
J. S.
Smith
,
B.
Nebgen
,
Y. W.
Li
,
N.
Fedik
,
A. I.
Boldyrev
,
N.
Lubbers
,
K.
Barros
, and
S.
Tretiak
,
J. Phys. Chem. Lett.
12
,
6227
(
2021
).
[186]
X.
Liu
,
L.
Zhang
, and
J.
Liu
,
J. Chem. Phys.
154
,
184104
(
2021
).
[187]
I. A.
Luchnikov
,
S. V.
Vintskevich
,
D. A.
Grigoriev
, and
S. N.
Filippov
,
Phys. Rev. Lett.
124
,
140502
(
2020
).
[188]
S.
Ueno
and
Y.
Tanimura
,
J. Chem. Theory Comput.
16
,
2099
(
2020
).
[189]
S.
Ueno
and
Y.
Tanimura
,
J. Chem. Theory Comput.
17
,
3618
(
2021
).
[190]
J.
Peng
,
Y.
Xie
,
D.
Hu
, and
Z.
Lan
,
J. Chem. Phys.
154
,
094122
(
2021
).
[191]
R.
Feynman
and
F.
Vernon
,
Ann. Phys.
24
,
118
(
1963
).
[192]
J.
Fischer
and
H. P.
Breuer
,
Phys. Rev. A
76
,
052119
(
2007
).
[193]
V.
Semin
,
I.
Sinayskiy
, and
F.
Petruccione
,
Phys. Rev. A
86
,
062114
(
2012
).
[194]
J.
Jing
and
L. A.
Wu
,
Sci. Rep.
8
,
1471
(
2018
).
[195]
P.
Degenfeld-Schonburg
and
M. J.
Hartmann
,
Phys. Rev. B
89
,
245108
(
2014
).
[196]
P.
Degenfeld-Schonburg
,
C.
Navarrete–Benlloch
, and
M. J.
Hartmann
,
Phys. Rev. A
91
,
053850
(
2015
).
[197]
C. A.
Parra-Murillo
,
M.
Bramberger
,
C.
Hubig
, and
I. D.
Vega
,
Phys. Rev. A
103
,
032204
(
2021
).
[198]
Z. H.
Chen
,
Y.
Wang
,
R. X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
154
,
244105
(
2021
).
[199]
Y.
Guo
,
P.
Taranto
,
B. H.
Liu
,
X. M.
Hu
,
Y. F.
Huang
,
C. F.
Li
, and
G. C.
Guo
,
Phys. Rev. Lett.
126
,
230401
(
2021
).
[200]
N.
Ng
and
E.
Rabani
, arXiv preprint arXiv:2105.04561 (
2021
).
[201]
D.
Gribben
,
A.
Strathearn
,
J.
Iles-Smith
,
D.
Kilda
,
A.
Nazir
,
B. W.
Lovett
, and
P.
Kirton
,
Phys. Rev. Res.
2
,
013265
(
2020
).
[202]
J.
Johansson
,
P.
Nation
, and
F.
Nori
,
Comp. Phys. Comm.
183
,
1760
(
2012
).
[203]
A. V.
Akimov
, “
Quantum Dynamic Hub
,” https://github.com/Quantum-Dynamics-Hub.
[204]
Open Source Quantum Software Project
,” https://github.com/qosf/awesome-quantum-software.
[205]
M. S.
Anis
,
H.
Abraham
,
A.
Offei
,
R.
Agarwal
,
G.
Agliardi
,
M.
Aharoni
,
I. Y.
Akhalwaya
,
G.
Aleksandrowicz
,
T.
Alexander
, et al, “
Qiskit: An Open-source Framework for Quantum Computing
”, (
2021
).
[206]
Cirq Developers, Google Quantum AI, “
Open Source Quantum Software Project
”, https://github.com/quantumlib/cirq (
2021
).
[207]
Quantum AI team and collaborators, “qsim”, 10.5281/zenodo.4023103 (
2020
).
[208]
H.
Wang
,
S.
Ashhab
, and
F.
Nori
,
Phys. Rev. A
83
,
062317
(
2011
).
[209]
A.
Aspuru-Guzik
and
P.
Walther
,
Nat. Phys.
8
,
285
(
2012
).
[210]
A.
Chenu
,
M.
Beau
,
J.
Cao
, and
A.
del Campo
,
Phys. Rev. Lett.
118
,
140403
(
2017
).
[211]
S.
Leontica
,
F.
Tennie
, and
T.
Farrow
,
Comm. Phys.
4
,
112
(
2021
).
[212]
J.
Preskill
,
Quantum
2
,
79
(
2018
).
[213]
K.
Bharti
,
A.
Cervera-Lierta
,
T. H.
Kyaw
,
T.
Haug
,
S.
Alperin-Lea
,
A.
Anand
,
M.
Degroote
,
H.
Heimonen
,
J. S.
Kottmann
,
T.
Menke
,
W. K.
Mok
,
S.
Sim
,
L. C.
Kwek
, and
A.
Aspuru-Guzik
, arXiv preprint arXiv:2101.08448 (
2021
).
[214]
P. J.
Ollitrault
,
G.
Mazzola
, and
I.
Tavernelli
,
Phys. Rev. Lett.
125
,
260511
(
2020
).
[215]
L.
Bassman
,
K.
Liu
,
A.
Krishnamoorthy
,
T.
Linker
,
Y.
Geng
,
D.
Shebib
,
S.
Fukushima
,
F.
Shimojo
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
,
Phys. Rev. B
101
,
184305
(
2020
).
[216]
F. J.
Dyson
,
Phys. Rev.
75
,
486
(
1949
).
[217]
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics,
New York
:
Oxford University Press
, (
2001
).
[218]
D. J.
Evans
and
G.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
, 2nd Edn.
Cambridge, UK
:
Cambridge University Press
, (
2008
).
[219]
A. M.
Wazwaz
, “Volterra Integro-Differential Equations,” in
Linear and Nonlinear Integral Equations
,
Heidelberg
:
Springer
,
175
212
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.