The photodissociation dynamics of AlO at 193 nm is studied using time-sliced ion velocity mapping. Two dissociation channels are found through the speed and angular distributions of aluminum ions: one is one-photon dissociation of the neutral AlO to generate Al(2Pu)+O(3Pg), and the other is two-photon ionization and then dissociation of AlO+ to generate Al+(1Sg)+O(3Pg). Each dissociation channel includes the contribution of AlO in the vibrational states v=0-2. The anisotropy parameter of the neutral dissociation channel is more dependent on the vibration state of AlO than the ion dissociation channel.

[1]
J. K.
McDonald
and
K. K.
Innes
,
J. Mol. Spectrosc.
32
,
501
(
1969
).
[2]
D. L.
Hildenbrand
,
Chem. Phys. Lett.
20
,
127
(
1973
).
[4]
G.
Das
,
T.
Janis
, and
A. C.
Wahl
,
J. Chem. Phys.
61
,
1274
(
1974
).
[6]
V. M.
Rao
,
M. L. P.
Rao
, and
P. T.
Rao
,
J. Phys. Soc. Jpn.
48
,
583
(
1980
).
[7]
A.
Marquez
,
M. J.
Capitan
,
J. A.
Odriozola
, and
J. F.
Sanz
,
Int. J. Quantum Chem.
52
,
1329
(
1994
).
[8]
R. R.
Reddy
,
Y. Nazeer
Ahammed
,
K. Rama
Gopal
,
P. Abdul
Azeem
, and
S.
Anjaneyulu
,
Astrophys. Space. Sci.
262
,
223
(
1998
).
[9]
J. E.
Sansonetti
and
W. C.
Martin
,
J. Phys. Chem. Ref. Data
34
,
1559
(
2005
).
[10]
N.
Gilka
,
J.
Tatchen
, and
C. M.
Marian
,
Chem. Phys.
343
,
258
(
2008
).
[11]
G.
Chambaud
,
P.
Rosmus
,
M. L.
Senent
, and
P.
Palmieri
,
Mol. Phys.
92
,
399
(
1997
).
[12]
N.
Honjou
,
J. Mol. Struct. (THEOCHEM)
939
,
59
(
2010
).
[13]
H.
Liu
,
D. H.
Shi
,
J. F.
Sun
, and
Z. L.
Zhu
,
Spectrochim. Acta A
101
,
400
(
2013
).
[14]
A. T.
Patrascu
,
C.
Hill
,
J.
Tennyson
, and
S. N.
Yurchenko
,
J. Chem. Phys.
141
,
144312
(
2014
).
[15]
Y. N.
Feng
and
Z. L. E.
Zhu
,
J. Quant. Spectrosc. Ra.
231
,
37
(
2019
).
[16]
T.
Torring
and
R.
Herrmann
,
Mol. Phys.
68
,
1379
(
1989
).
[17]
H.
Ito
and
M.
Goto
,
Chem. Phys. Lett.
227
,
293
(
1994
).
[18]
M.
Goto
,
S.
Takano
,
S.
Yamamoto
,
H.
Ito
, and
S.
Saito
,
Chem. Phys. Lett.
227
,
287
(
1994
).
[19]
C.
Zenouda
,
P.
Blottiau
,
G.
Chambaud
, and
P.
Rosmus
,
J. Mol. Struct. (THEOCHEM)
458
,
61
(
1999
).
[20]
F. F.
Li
,
C. W.
Dong
,
J.
Chen
,
J. X.
Liu
,
F. Y.
Wang
, and
X.
Xu
,
Chem. Sci.
9
,
488
(
2018
).
[21]
J. L.
Gole
and
R. N.
Zare
,
J. Chem. Phys.
57
,
5331
(
1972
).
[22]
[23]
P. J.
Dagdigian
,
H. W.
Cruse
, and
R. N.
Zare
,
J. Chem. Phys.
62
,
1824
(
1975
).
[24]
P. Y.
Yan
,
X.
Yuan
,
S.
Yin
,
X. T.
Liu
,
H. F.
Xu
, and
B.
Yan
,
Comput. Theor. Chem.
1117
,
258
(
2017
).
[25]
Y.
Feng
,
D.
Shi
, and
J.
Sun
,
Mol. Phys.
118
,
1614690
(
2020
).
[26]
F. F.
Li
,
Y. J.
Ma
,
J. X.
Liu
, and
F. Y.
Wang
,
J. Chem. Phys.
149
,
124303
(
2018
).
[27]
Y. J.
Ma
,
J. X.
Liu
,
F. F.
Li
,
F. Y.
Wang
, and
T. N.
Kitsopoulos
,
J. Phys. Chem. A
123
,
3672
(
2019
).
[28]
Y. J.
Ma
,
F. F.
Li
,
J. X.
Liu
, and
F. Y.
Wang
,
Chin. J. Chem. Phys.
32
,
129
(
2019
).
[29]
E. P. J.
Linstrom
and
W. G.
Mallard
,
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
Gaithersburg MD
:
National Institute of Standards and Technology
,
20899
, , (retrieved June 24,
2020
).
[30]
R. N.
Dixon
,
J. Chem. Phys.
122
,
194302
(
2005
).
[31]
Y. A.
Feng
and
Z. L.
Zhu
,
Spectrochim. Acta A
218
,
184
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.