Photo-induced proton coupled electron transfer (PCET) is essential in the biological, photosynthesis, catalysis and solar energy conversion processes. Recently, p-nitrophenylphenol (HO-Bp-NO2) has been used as a model compound to study the photo-induced PCET mechanism by using ultrafast spectroscopy. In transient absorption spectra both singlet and triplet states were observed to exhibit PCET behavior upon laser excitation of HO-Bp-NO2. When we focused on the PCET in the triplet state, a new sharp band attracted us. This band was recorded upon excitation of HO-Bp-NO2 in aprotic polar solvents, and has not been observed for p-nitrobiphenyl which is without hydroxyl substitution. In order to find out what the new band represents, acidic solutions were used as an additional proton donor considering the acidity of HO-Bp-NO2. With the help of results in strong (~10−1 mol/L) and weak (~10−4 mol/L) acidic solutions, the new band is identified as open shell singlet O-Bp-NO2H, which is generated through protonation of nitro O in 3HO-Bp-NO2 followed by deprotonation of hydroxyl. Kinetics analysis indicates that the formation of radical O-Bp-NO2 competes with O-Bp-NO2H in the way of concerted electron-proton transfer and/or proton followed electron transfers and is responsible for the low yield of O-Bp-NO2H. The results in the present work will make it clear how the 3HO-Bp-NO2 deactivates in aprotic polar solvents and provide a solid benchmark for the deeply studying the PCET mechanism in triplets of analogous aromatic nitro compounds.

[1]
D. R.
Weinberg
,
C. J.
Gagliardi
,
J. F.
Hull
,
C. F.
Murphy
,
C. A.
Kent
,
B. C.
Westlake
,
A.
Paul
,
D. H.
Ess
,
D. G.
McCafferty
, and
T. J.
Meyer
,
Chem. Rev.
112
,
4016
(
2012
).
[2]
T. T.
Eisenhart
and
J. L.
Dempsey
,
J. Am. Chem. Soc.
136
,
12221
(
2014
).
[3]
M. D.
Sevilla
and
A.
Kumar
,
Chem. Rev.
110
,
7002
(
2010
).
[4]
H.
Wang
,
X.
Chen
, and
W.
Fang
,
Phys. Chem. Chem. Phys.
16
,
25432
(
2014
).
[5]
M. H.
Stockett
,
Phys. Chem. Chem. Phys.
19
,
25829
(
2017
).
[6]
C. T.
Middleton
,
K.
de La Harpe
,
C.
Su
,
Y. K.
Law
,
C. E.
Crespo-Hernandez
, and
B.
Kohler
,
Annu. Rev. Phys. Chem.
60
,
217
(
2009
).
[7]
C. J.
Gagliardi
,
B. C.
Westlake
,
C. A.
Kent
,
J. J.
Paul
,
J. M.
Papanikolas
, and
T. J.
Meyer
,
Coord. Chem. Rev.
254
,
2459
(
2010
).
[8]
S. J.
Mora
,
E.
Odella
,
G. F.
Moore
,
D.
Gust
,
T. A.
Moore
, and
A. L.
Moore
,
Acc. Chem. Res.
51
,
445
(
2018
).
[9]
J. L.
Dempsey
,
B. S.
Brunschwig
,
J. R.
Winkler
, and
H. B.
Gray
,
Acc. Chem. Res.
42
,
1995
(
2009
).
[10]
N.
Hoffmann
,
Eur. J. Org. Chem.
2017
,
1982
(
2017
).
[11]
D.
Gust
,
T. A.
Moore
, and
A. L.
Moore
,
Acc. Chem. Res.
42
,
1890
(
2009
).
[12]
J. C.
Lennox
,
D. A.
Kurtz
,
T.
Huang
, and
J. L.
Dempsey
,
ACS Energy Lett.
2
,
1246
(
2017
).
[13]
P.
Goyal
and
S.
Hammes-Schiffer
,
ACS Energy Lett.
2
,
512
(
2017
).
[14]
B. C.
Westlake
,
M. K.
Brennaman
,
J. J.
Concepcion
,
J. J.
Paul
,
S. E.
Bettis
,
S. D.
Hampton
,
S. A.
Miller
,
N. V.
Lebedeva
,
M. D. E.
Forbes
,
A. M.
Moran
,
T. J.
Meyer
, and
J. M.
Papanikolas
,
Proc. Natl. Acad. Sci. USA
108
,
8554
(
2011
).
[15]
P.
Goyal
and
S.
Hammes-Schiffer
,
J. Phys. Chem. Lett.
6
,
3515
(
2015
).
[16]
C.
Ko
,
B. H.
Solis
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. B
117
,
316
(
2013
).
[17]
P.
Goyal
,
C. A.
Schwerdtfeger
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. B
119
,
2758
(
2015
).
[18]
E. F.
Plaza-Medina
,
W.
Rodriguez-Cordoba
, and
J.
Peon
,
J. Phys. Chem. A
115
,
9782
(
2011
).
[19]
M. M.
Brister
,
L. E.
Piñero-Santiago
,
M.
Morel
,
R.
Arce
, and
C. E.
Crespo-Hernández
,
J. Phys. Chem. Lett.
7
,
5086
(
2016
).
[20]
R. A.
Vogt
,
C.
Reichardt
, and
C. E.
Crespo-Hernández
,
J. Phys. Chem. A
117
,
6580
(
2013
).
[21]
R. A.
Vogt
and
C. E.
Crespo-Hernández
,
J. Phys. Chem. A
117
,
14100
(
2013
).
[22]
M. M.
Brister
,
L. E.
Piñeo-Santiago
,
M.
Morel
,
R.
Arce
, and
C. E.
Crespo-Hernández
,
J. Phys. Chem. A
121
,
8197
(
2017
).
[23]
Z. I.
Garćıa-Berŕıos
and
R.
Arce
,
J. Phys. Chem. A
116
,
3652
(
2012
).
[24]
R.
Arce
,
E.
Pino
,
F. C.
Valle
,
I.
Negrón-Encarnación
, and
M.
Morel
,
J. Phys. Chem. A
115
,
152
(
2011
).
[25]
R.
Arce
,
E.
Pino
,
F. C.
Valle
, and
J.
Ágreda
,
J. Phys. Chem. A
112
,
10294
(
2008
).
[26]
Z. I.
Garćıa-Berŕıos
,
R.
Arce
,
M.
Burgos-Martínez
, and
N. D.
Burgos-Polanco
,
J. Photochem. Photobio. A
332
,
131
(
2017
).
[27]
D.
Zhang
,
P.
Jin
,
M.
Yang
,
Y.
Du
,
X.
Zheng
, and
J.
Xue
,
J. Phys. Chem. A
122
,
1831
(
2018
).
[28]
K. A.
Zachariasse
,
Chem. Phys. Lett.
320
,
8
(
2000
).
[29]
M.
Hashimoto
and
H. O.
Hamaguchi
,
J. Phys. Chem.
99
,
7875
(
1995
).
[30]
R.
Ghosh
,
A.
Nandi
, and
D. K.
Palit
,
Phys. Chem. Chem. Phys.
18
,
7661
(
2016
).
[31]
P.
Goyal
,
C. A.
Schwerdtfeger
,
A. V.
Soudackov
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. B
120
,
2407
(
2016
).
[32]
P.
Jin
,
J.
Long
,
Y.
Du
,
X.
Zheng
, and
J.
Xue
,
Spectrochim. Acta A
217
,
44
(
2019
).
[33]
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
[34]
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
109
,
8218
(
1998
).
[35]
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
[36]
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
[37]
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
[38]
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
 Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
,
Gaussian 09, A.01
;
Walling-ford, CT
:
Gaussian, Inc.
, (
2009
).
[39]
T. A.
Oliver
,
Y.
Zhang
,
A.
Roy
,
M. N.
Ashfold
, and
S. E.
Bradforth
,
J. Phys. Chem. Lett.
6
,
4159
(
2015
).
[40]
Z. R.
Grabowski
,
K.
Rotkiewicz
, and
W.
Retting
,
Chem. Rev.
103
,
3899
(
2003
).
[41]
[42]
G. N.
Vriens
,
Ind. Eng. Chem.
46
,
669
(
1954
).
[43]
N. J.
Turro
,
Modern Molecular Photochemistry
,
Sausalito, CA
:
University Science Books
, (
1991
).
[44]
W. J.
Leigh
,
E. C.
Lathioor
, and
M. J. S.
Pierre
,
J. Am. Chem. Soc.
118
,
12339
(
1996
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.