Bimetallic catalysts can improve CO2 reduction efficiency via the combined properties of two metals. CuPd shows enhanced CO2 reduction activity compared to copper alone. Using differential electrochemical mass spectrometry (DEMS) and electrochemical infrared (IR) spectroscopy, volatile products and adsorbed intermediates were measured during CO2 and CO reduction on Cu and CuPd. The IR band corresponding to adsorbed CO appears 300 mV more positive on CuPd than that on Cu, indicating acceleration of CO2 reduction to CO. Electrochemical IR spectroscopy measurements in CO-saturated solutions reveal similar potentials for CO adsorption and CO32− desorption on CuPd and Cu, indicating that CO adsorption is controlled by desorption of CO32−. DEMS measurements carried out during CO reduction at both electrodes showed that the onset potential for reduction of CO to CH4 and CH3OH on CuPd is about 200 mV more positive than that on Cu. We attribute these improvements to interaction of Cu and Pd, which shifts the d-band center of the Cu sites.

[1]
Y. J.
Zhang
,
V.
Sethuraman
,
R.
Michalsky
, and
A. A.
Peterson
,
ACS Catal.
4
,
3742
(
2014
).
[2]
R.
Kortlever
,
J.
Shen
,
K. J. P.
Schouten
,
F.
Calle-Vallejo
, and
M. T.
Koper
,
J. Phys. Chem. Lett.
6
,
4073
(
2015
).
[3]
I. V.
Chernyshova
,
P.
Somasundaran
, and
S.
Ponnurangam
,
Proc. Natl. Acad. Sci. USA
115
,
E9261
(
2018
).
[4]
H.
Mistry
,
A. S.
Varela
,
S.
Kühl
,
P.
Strasser
, and
B. R.
Cuenya
,
Nat. Rev. Mater.
1
,
1
(
2016
).
[5]
D.
Gao
,
F.
Cai
,
G.
Wang
, and
X.
Bao
,
Curr. Opin. Green. Sustain. Chem.
3
,
39
(
2017
).
[6]
J. H.
Wu
,
Y.
Huang
,
W.
Ye
, and
Y. G.
Li
,
Adv. Sci.
4
(
11
) (
2017
).
[7]
K.
Lee
,
H.
Kosaka
,
S.
Sato
,
T.
Yokoi
,
B.
Choi
, and
D.
Kim
,
J. Ind. Eng. Chem.
72
,
73
(
2019
).
[8]
H.
Wang
,
P.
Gao
,
T.
Zhao
,
W.
Wei
, and
Y.
Sun
,
Sci. China. Chem.
58
,
79
(
2014
).
[9]
Z.
Sun
,
M. M.
Sartin
,
W.
Chen
,
F.
He
,
J.
Cai
, and
Y. X.
Chen
,
J. Phys. Chem. C
123
,
21467
(
2019
).
[10]
Y. J.
Zhang
,
V.
Sethuraman
,
R.
Michalsky
, and
A. A.
Peterson
,
ACS Catal.
4
,
3742
(
2014
).
[11]
J.
Yang
,
J.
Wei
,
W.
Chen
, and
Y. X.
Chen
,
Chin. J. Chem. Phys.
31
,
626
(
2018
).
[12]
Y.
Hori
,
A.
Murata
, and
R.
Takahashi
,
J. Chem. Soc. Farad. Trans.
85
,
2309
(
1989
).
[13]
Y.
Katayama
,
F.
Nattino
,
L.
Giordano
,
J.
Hwang
,
R. R.
Rao
,
O.
Andreussi
,
N.
Marzari
, and
Y.
Shao-Horn
,
J. Phys. Chem. C
123
,
5951
(
2018
).
[14]
F. Y.
Zhang
,
T.
Sheng
,
N.
Tian
,
L.
Liu
, and
S. G.
Sun
,
Chem. Commun.
53
,
8085
(
2017
).
[15]
C. W.
Li
and
M. W.
Kanan
,
J. Am. Chem. Soc.
134
,
7231
(
2012
).
[16]
A.
Banerjee
,
G. R.
Dick
,
T.
Yoshino
, and
M. W.
Kanan
,
Nature
531
(
2016
).
[17]
Y.
Huang
,
A. D.
Handoko
,
P.
Hirunsit
, and
B. S.
Yeo
,
ACS Catal.
7
,
1749
(
2017
).
[18]
D.
Gao
,
I.
Zegkinoglou
,
N. J.
Divins
,
F.
Scholten
,
I.
Sinev
,
P.
Grosse
, and
B. R.
Cuenya
,
ACS Nano
11
,
4825
(
2017
).
[19]
T.
Takashima
,
T.
Suzuki
, and
H.
Irie
,
Electrochim. Acta
229
,
415
(
2017
).
[20]
M.
Li
,
J.
Wang
,
P.
Li
,
K.
Chang
,
N.
Umezawa
, and
J.
Ye
,
J. Mater. Chem. A
4
,
4776
(
2016
).
[21]
J.
Aldana-González
,
J.
Olvera-García
,
M. G. M.
Oca
,
M.
Romero-Romo
,
M. T.
Ram´ırez-Silva
, and
M.
Palomar-Pardav´e
,
Electrochem. Commun.
56
,
70
(
2015
).
[22]
R.
Reske
,
M.
Duca
,
M.
Oezaslan
,
K. J. P.
Schouten
,
M. T. M.
Koper
, and
P.
Strasser
,
J. Phys. Chem. C
4
,
2410
(
2013
).
[23]
R.
Jana
,
A.
Bhim
,
P.
Bothra
,
S. K.
Pati
, and
S. C.
Peter
,
Chemsuschem
9
,
2922
(
2016
).
[24]
Y.
Hori
,
A.
Murata
, and
Y.
Yoshinami
,
J. Chem. Soc. Farad. Trans.
87
,
125
(
1991
).
[25]
M.
Dunwell
,
Q.
Lu
,
J. M.
Heyes
,
J.
Rosen
,
J. G.
Chen
,
Y.
Yan
,
F.
Jiao
, and
B.
Xu
,
J. Am. Chem. Soc.
139
,
3774
(
2017
).
[26]
A.
Wuttig
,
M.
Yaguchi
,
K.
Motobayashi
,
M.
Osawa
, and
Y.
Surendranath
,
Proc. Natl. Acad. Sci. USA
113
,
E4585
(
2016
).
[27]
M. M.
Sartin
,
Z.
Yu
,
W.
Chen
,
F.
He
,
Z.
Sun
,
Y. X.
Chen
, and
W.
Huang
,
J. Phys. Chem. C
122
,
26489
(
2018
).
[28]
H. F.
Wang
,
Y. G.
Yan
,
S. J.
Huoa
,
W. B.
Cai
,
Q. J.
Xub
, and
M.
Osawa
,
Electrochim. Acta
52
,
5950
(
2007
).
[29]
R.
Reske
,
H.
Mistry
,
F.
Behafarid
,
B. R
Cuenya
, and
P.
Strasser
,
J. Am. Chem. Soc.
136
,
6978
(
2014
).
[30]
Y.
Hori
,
K.
Kikuchi
,
A.
Murata
, and
S.
Suzuki
,
Chem. Lett.
15
,
897
(
1986
).
[31]
Y.
Hori
,
H.
Wakebe
,
T.
Tsukamoto
, and
O.
Koga
,
Surf. Sci.
335
,
258
(
1995
).
[32]
Y.
Hori
,
A.
Murata
,
T.
Tsukamoto
,
H.
Wakebe
,
O.
Koga
, and
H.
Yamazaki
,
Electrochim. Acta
39
,
2495
(
1994
).
[33]
Y.
Hori
,
O.
Koga
,
Y.
Watanabe
, and
T.
Matsuo
,
Electrochim. Acta
44
,
1389
(
1998
).
[34]
S.
Zhu
,
B.
Jiang
,
W. B.
Cai
, and
M.
Shao
,
J. Am. Chem. Soc.
139
,
15664
(
2017
).
[35]
M.
Baldassarre
and
A.
Barth
,
Analyst
139
,
2167
(
2014
).
[36]
T.
Iwasita
and
E.
Pastor
,
Electrochim. Acta
39
,
531
(
1994
).
[37]
A.
Wuttig
,
C.
Liu
,
Q.
Peng
,
M.
Yaguchi
,
C. H.
Hendon
,
K.
Motobayashi
,
S.
Ye
,
M.
Osawa
, and
Y.
Surendranath
,
ACS Cent. Sci.
2
,
522
(
2016
).
[38]
B. D.
Smith
,
D. E.
Irish
, and
J.
Augustynski
,
J. Electrochem. Soc.
144
,
4288
(
1997
).
[39]
J.
Salimon
,
R. M.
Hernández-Romero
, and
M.
Kalaji
,
J. Electroanal. Chem
538-539
,
99
(
2002
).
[40]
S. K.
Shaw
,
A.
Berná
,
J. M.
Feliu
,
R. J.
Nichols
,
T.
Jacob
, and
D. J.
Schiffrin
,
Phys. Chem. Chem. Phys.
13
,
5242
(
2011
).
[41]
C. M.
Gunathunge
,
V. J.
Ovalle
,
Y.
Li
,
M. J.
Janik
, and
M. M.
Waegele
,
ACS Catal.
8
,
7507
(
2018
).
[42]
S. K.
Shaw
,
A.
Berná
,
J. M.
Feliu
,
R. J.
Nichols
,
T.
Jacob
, and
D. J.
Schiffrin
,
Phys. Chem. Chem. Phys.
13
,
5242
(
2011
).
[43]
M.
Dunwell
,
X.
Yang
,
Y.
Yan
, and
B.
Xu
,
J. Phys. Chem. C
122
,
24658
(
2018
).
[44]
W. W.
Rudolph
,
D.
Fischer
, and
G.
Irmer
,
J. Appl. Spectrosc.
60
,
130
(
2006
).
[45]
H.
Miyake
,
E.
Hosono
,
M.
Osawa
, and
T.
Okada
,
Chem. Phys. Lett.
428
,
451
(
2006
).
[46]
M. M.
Sartin
,
W.
Chen
,
F.
He
, and
Y. X.
Chen
,
J. Electrochem.
.
This content is only available via PDF.
You do not currently have access to this content.