Free energy calculations may provide vital information for studying various chemical and biological processes. Quantum mechanical methods are required to accurately describe interaction energies, but their computations are often too demanding for conformational sampling. As a remedy, level correction schemes that allow calculating high level free energies based on conformations from lower level simulations have been developed. Here, we present a variation of a Monte Carlo (MC) resampling approach in relation to the weighted histogram analysis method (WHAM). We show that our scheme can generate free energy surfaces that can practically converge to the exact one with sufficient sampling, and that it treats cases with insufficient sampling in a more stable manner than the conventional WHAM-based level correction scheme. It can also provide a guide for checking the uncertainty of the level-corrected surface and a well-defined criterion for deciding the extent of smoothing on the free energy surface for its visual improvement. We demonstrate these aspects by obtaining the free energy maps associated with the alanine dipeptide and proton transfer network of the KillerRed protein in explicit water, and exemplify that the MC resampled WHAM scheme can be a practical tool for producing free energy surfaces of realistic systems.

[1]
N.
Hansen
and
W. F.
van Gunsteren
,
J. Chem. Theory Comput.
10
,
2632
(
2014
).
[2]
J. D.
Chodera
,
D. L.
Mobley
,
M. R.
Shirts
,
R. W.
Dixon
,
K.
Branson
, and
V. S.
Pande
,
Curr. Opin. Struct. Biol.
21
,
150
(
2011
).
[3]
D. L.
Mobley
and
P. V.
Klimovich
,
J. Chem. Phys.
137
,
230901
(
2012
).
[4]
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1935
).
[5]
F. B.
Sheinerman
and
C. L.
Brooks
,
Proc. Natl. Acad. Sci. USA
95
,
1562
(
1998
).
[6]
K.
Arora
and
C. L.
Brooks
,
Proc. Natl. Acad. Sci. USA
104
,
18496
(
2007
).
[7]
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
[8]
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
,
2nd Edn
.,
San Diego
:
Academic Press
(
2002
).
[9]
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
[10]
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. USA
99
,
12562
(
2002
).
[11]
N. V.
Plotnikov
,
S. C. L.
Kamerlin
, and
A.
Warshel
,
J. Phys. Chem. B
115
,
7950
(
2011
).
[12]
R.
Galvelis
and
Y.
Sugita
,
J. Comput. Chem.
36
,
1446
(
2015
).
[13]
S.
Piana
and
A.
Laio
,
J. Phys. Chem. B
111
,
4553
(
2007
).
[14]
A.
Gil-Ley
and
G.
Bussi
,
J. Chem. Theory Comput.
11
,
1077
(
2015
).
[15]
A.
Gil-Ley
and
G.
Bussi
,
J. Chem. Theory Comput.
11
,
5554
(
2015
).
[16]
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
[17]
G.
König
,
F. C.
Pickard
,
Y.
Mei
, and
B. R.
Brooks
,
J. Comput. Aided Mol. Des.
28
,
245
(
2014
).
[18]
X.
Jia
,
M.
Wang
,
Y.
Shao
,
G.
König
,
B. R.
Brooks
,
J. Z. H.
Zhang
, and
Y.
Mei
,
J. Chem. Theory Comput.
12
,
499
(
2016
).
[19]
E. C.
Dybeck
,
G.
König
,
B. R.
Brooks
, and
M. R.
Shirts
,
J. Chem. Theory Comput.
12
,
1466
(
2016
).
[20]
F. C.
Pickard
,
G.
König
,
A. C.
Simmonett
,
Y.
Shao
, and
B. R.
Brooks
,
Bioorg. Med. Chem.
24
,
4988
(
2016
).
[21]
F. C.
Pickard
,
G.
König
,
F.
Tofoleanu
,
J.
Lee
,
A. C.
Simmonett
,
Y.
Shao
,
J. W.
Ponder
, and
B. R.
Brooks
,
J. Comput. Aided Mol. Des.
30
,
1087
(
2016
).
[22]
W. L.
Jorgensen
and
L. L.
Thomas
,
J. Chem. Theory Comput.
4
,
869
(
2008
).
[23]
[24]
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
[26]
R. P.
Muller
and
A.
Warshel
,
J. Phys. Chem.
99
,
17516
(
1995
).
[27]
E.
Rosta
,
M.
Klähn
, and
A.
Warshel
,
J. Phys. Chem. B
110
,
2934
(
2006
).
[28]
N. V.
Plotnikov
and
A.
Warshel
,
J. Phys. Chem. B
116
,
10342
(
2012
).
[29]
I.
Polyak
,
T.
Benighaus
,
E.
Boulanger
, and
W.
Thiel
,
J. Chem. Phys.
139
,
064105
(
2013
).
[30]
J. J.
Ruiz-Pernía
,
E.
Silla
,
I.
Tuñón
,
S.
Martí
, and
V.
Moliner
,
J. Phys. Chem. B
108
,
8427
(
2004
).
[31]
P. S.
Hudson
,
S.
Boresch
,
D. M.
Rogers
, and
H. L.
Woodcock
,
J. Chem. Theory Comput.
14
,
6327
(
2018
).
[32]
X.
Pan
,
P.
Li
,
J.
Ho
,
J.
Pu
,
Y.
Mei
, and
Y.
Shao
,
Phys. Chem. Chem. Phys.
21
,
20595
(
2019
).
[33]
G.
König
and
S.
Boresch
,
J. Comput. Chem.
32
,
1082
(
2011
).
[34]
G.
König
,
P. S.
Hudson
,
S.
Boresch
, and
H. L.
Woodcock
,
J. Chem. Theory Comput.
10
,
1406
(
2014
).
[35]
[36]
M. R.
Shirts
,
E.
Bair
,
G.
Hooker
, and
V. S.
Pande
,
Phys. Rev. Lett.
91
,
140601
(
2003
).
[37]
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
,
1195
(
1989
).
[38]
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
,
J. Comput. Chem.
13
,
1011
(
1992
).
[39]
M. R.
Shirts
and
J. D.
Chodera
,
J. Chem. Phys.
129
,
124105
(
2008
).
[40]
Y.
Mori
and
Y.
Okamoto
,
Phys. Rev. E
87
,
023301
(
2013
).
[41]
P.
Li
,
X.
Jia
,
X.
Pan
,
Y.
Shao
, and
Y.
Mei
,
J. Chem. Theory Comput.
14
,
5583
(
2018
).
[42]
C.
Cave-Ayland
,
C. K.
Skylaris
, and
J. W.
Essex
,
J. Chem. Theory Comput.
13
,
415
(
2017
).
[43]
Z.
Tan
,
E.
Gallicchio
,
M.
Lapelosa
, and
R. M.
Levy
,
J. Chem. Phys.
136
,
144102
(
2012
).
[44]
M. E.
Bulina
,
D. M.
Chudakov
,
O. V.
Britanova
,
Y. G.
Yanushevich
,
D. B.
Staroverov
,
T. V.
Chepurnykh
,
E. M.
Merzlyak
,
M. A.
Shkrob
,
S.
Lukyanov
, and
K. A.
Lukyanov
,
Nat. Biotechnol.
24
,
95
(
2006
).
[45]
W.
Lee
,
I.
Kim
, and
Y. M.
Rhee
,
Phys. Chem. Chem. Phys.
20
,
22342
(
2018
).
[46]
G. B.
Rocha
,
R. O.
Freire
,
A. M.
Simas
, and
J. J. P.
Stewart
,
J. Comput. Chem.
27
,
1101
(
2006
).
[47]
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
[48]
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
[49]
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
[50]
G.
Lamoureux
and
B.
Roux
,
J. Chem. Phys.
119
,
3025
(
2003
).
[51]
A.
Warshel
,
M.
Kato
, and
A. V.
Pisliakov
,
J. Chem. Theory Comput.
3
,
2034
(
2007
).
[52]
J. W.
Ponder
,
C.
Wu
,
P.
Ren
,
V. S.
Pande
,
J. D.
Chodera
,
M. J.
Schnieders
,
I.
Haque
,
D. L.
Mobley
,
D. S.
Lambrecht
,
R. A.
DiStasio
,
M.
Head-Gordon
,
G. N. I.
Clark
,
M. E.
Johnson
, and
T.
Head-Gordon
,
J. Phys. Chem. B
114
,
2549
(
2010
).
[53]
Y.
Shi
,
Z.
Xia
,
J.
Zhang
,
R.
Best
,
C.
Wu
,
J. W.
Ponder
, and
P.
Ren
,
J. Chem. Theory Comput.
9
,
4046
(
2013
).
[54]
J.
Huang
,
P. E. M.
Lopes
,
B.
Roux
, and
A. D.
MacKerell
,
J. Phys. Chem. Lett.
5
,
3144
(
2014
).
[55]
L. P.
Wang
,
T. J.
Martinez
, and
V. S.
Pande
,
J. Phys. Chem. Lett.
5
,
1885
(
2014
).
[56]
M. L.
Laury
,
L. P.
Wang
,
V. S.
Pande
,
T.
Head-Gordon
, and
J. W.
Ponder
,
J. Phys. Chem. B
119
,
9423
(
2015
).
[57]
J. A.
Lemkul
,
J.
Huang
,
B.
Roux
, and
A. D.
MacKerell
,
Chem. Rev.
116
,
4983
(
2016
).
[58]
J.
Huang
,
A. C.
Simmonett
,
F. C.
PickardIV
,
A. D.
MacKerell
Jr.
, and
B. R.
Brooks
,
J. Chem. Phys.
147
,
161702
(
2017
).
[59]
L. P.
Wang
,
K. A.
McKiernan
,
J.
Gomes
,
K. A.
Beauchamp
,
T.
Head-Gordon
,
J. E.
Rice
,
W. C.
Swope
,
T. J.
Martnez
, and
V. S.
Pande
,
J. Phys. Chem. B
121
,
4023
(
2017
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.