Artemisinin is an excellent antimalarial drug widely used in clinical medicine. However, due to the limitation of natural source of artemisinin, the chemical synthesis of artemisinin has achieved substantial attention. Dihydroartemisinic acid is a key precursor for the synthesis of artemisinin. The reaction of dihydroartemisinic acid with singlet oxygen to form peroxide is a pivotal step in the photochemical preparation of artemisinin. Nevertheless, the reaction kinetics of dihydroartemisinic acid with singlet oxygen has not been investigated previously. Herein, we report the rate constants of the reaction between dihydroartemisinic acid and singlet oxygen. By directly detecting the luminescence decay kinetics of singlet oxygen at 1270 nm at room temperature, the reaction rate constants of singlet oxygen and dihydroartemisinic acid in different solvents are obtained to be 1.81×105 (mol/L)−1·s−1 in CCl4, 5.69×105 (mol/L)−1·s−1 in CH3CN, and 3.27×106 (mol/L)−1·s−1 in DMSO, respectively. It is found that the reaction rate constants of dihydroartemisinic acid with singlet oxygen increase as polarity of the solvent increases among the three solvents. These results provide fundamental knowledge to optimize experiment conditions of photochemical synthesis of artemisinin for improving the yields of artemisinin.

[1]
M. A.
van Agtmael
,
T. A.
Eggelte
, and
C. J.
van Boxtel
,
Trends Pharmacol. Sci.
20
,
199
(
1999
).
[2]
Y. Y.
Tu
,
Angew. Chem. Int. Ed.
55
,
10210
(
2016
).
[3]
A.
Bhaw-Luximon
and
D.
Jhurry
,
Cancer Chemother. Pharmacol.
79
,
451
(
2017
).
[4]
F.
Lévesque
and
P. H.
Seeberger
,
Angew. Chem. Int. Ed.
51
,
1706
(
2012
).
[5]
Z. L.
Wang
,
L. Y.
Yang
,
X. W.
Yang
, and
X. H.
Zhang
,
Synthetic Commun.
44
,
1987
(
2014
).
[6]
B. J.
Kim
and
T.
Sasaki
,
Org. Prep. Proced. Int.
38
,
1
(
2006
).
[7]
D.
Chaturvedi
,
A.
Goswami
,
P. P.
Saikia
,
N. C.
Barua
, and
P. G.
Rao
,
Chem. Soc. Rev.
39
,
435
(
2010
).
[8]
M. Z.
Abdin
,
M.
Israr
,
R. U.
Rehman
, and
S. K.
Jain
,
Planta. Med.
69
,
289
(
2003
).
[9]
C. W.
Jefford
,
Drug Discov. Today
12
,
487
(
2007
).
[10]
L.
Nahar
,
M. Q.
Guo
, and
S. D.
Sarker
,
Phytochem. Anal.
31
,
5
(
2020
).
[11]
X. X.
Xu
,
J.
Zhu
,
D. Z.
Huang
, and
W. S.
Zhou
,
Tetrahedron
42
,
819
(
1986
).
[12]
G.
Schmid
and
W.
Hofheinz
,
J. Am. Chem. Soc.
105
,
625
(
1983
).
[13]
D. M.
Nowak
and
P. T.
Lansbury
,
Tetrahedron
54
,
319
(
1998
).
[14]
P. T.
Lansbury
and
D. M.
Nowak
,
Tetrahedron Lett.
33
,
1029
(
1992
).
[15]
R. J.
Roth
and
N.
Acton
,
J. Nat. Prod.
52
,
1183
(
1989
).
[16]
B.
Ye
and
Y. L.
Wu
,
J. Chem. Soc. Chem. Commun.
727
(
1990
).
[17]
H. D.
Hao
,
Y.
Li
,
W. B.
Han
, and
Y. K.
Wu
,
Org. Lett.
13
,
4212
(
2011
).
[18]
D.
Kopetzki
,
F.
Lévesque
, and
P. H.
Seeberger
,
Chem. Eur. J.
19
,
5450
(
2013
).
[19]
W. B.
Zhang
,
D. L.
Liu
, and
Q. J.
Yuan
,
CN103193791A
(
2012
).
[20]
J.
Baier
,
T.
Fuß
,
C.
Pöllmann
,
C.
Wiesmann
,
K.
Pindl
,
R.
Engl
,
D.
Baumer
,
M.
Maier
,
M.
Landthaler
, and
W.
Bäumler
,
J. Photochem. Photobiol. B
87
,
163
(
2007
).
[21]
K.
Tsukagoshi
,
K.
Fukumoto
,
R.
Nakajima
,
K.
Yamashita
, and
H.
Maeda
,
Talanta
72
,
607
(
2007
).
[22]
M. C.
Derosa
and
R. J.
Crutchley
,
Coordin. Chem. Rev.
233-234
,
351
(
2002
).
[23]
E.
Arunkumar
,
P. K.
Sudeep
,
P. V.
Kamat
,
B. C.
Noll
, and
B. D.
Smith
,
New J. Chem.
31
,
677
(
2007
).
[24]
A. A.
Ghogare
and
A.
Greer
,
Chem. Rev.
116
,
9994
(
2016
).
[25]
R.
Schimidt
,
C.
Tanielian
,
R.
Dunsbach
, and
C.
Wolf
,
J. Photochem. Photobiol. A
79
,
11
(
1994
).
[26]
R. D.
Scurlock
,
S.
Nonell
,
S. E.
Braslavsky
, and
P. R.
Ogilby
,
J. Phys. Chem.
99
,
3521
(
1995
).
[27]
Y.
Xia
,
F.
Wang
,
R. N.
Wang
,
K. L.
Liu
, and
H. M.
Su
,
Chin. J. Chem. Phys.
32
,
93
(
2019
).
[28]
P. R.
Ogilby
and
C. S.
Foote
,
J. Am. Chem. Soc.
104
,
2070
(
1982
).
[29]
R. L.
Jensen
,
J.
Arnbjerg
, and
P. R.
Ogilby
,
J. Am. Chem. Soc.
132
,
8098
(
2010
).
[30]
A. P.
Losev
,
I. M.
Byteva
, and
G. P.
Gurinovich
,
Chem. Phys. Lett.
143
,
127
(
1988
).
[31]
E. A.
Lissi
,
M. V.
Encinas
,
E.
Lemp
, and
M. A.
Rubio
,
Chem. Rev.
93
,
699
(
1993
).
[32]
L. M.
Stephenson
,
M. J.
Grdina
, and
M.
Orfanopoulos
,
Acc. Chem. Res.
13
,
419
(
1980
).
[33]
K.
Gloonick
and
A.
Griesbeck
,
Tetrahedron Lett.
25
,
725
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.