CH3 internal rotation is one of the typical large amplitude motions in polyatomic molecules, the spectral analysis and theoretical calculations of which, were developed by Li-Hong Xu and Jon Hougen. We observed a Doppler-free high-resolution and high-precision spectrum of 9-methylanthracene (9MA) by using the collimated supersonic jet and optical frequency comb techniques. The potential energy curve of CH3 internal rotation is expressed by a six-fold symmetric sinusoidal function. It was previously shown that the barrier height (V6) of 9MA-d12 was considerably smaller than that of 9MA-h12 [M. Baba, et al., J. Phys. Chem. A 113, 2366 (2009)]. We performed ab initio theoretical calculations of the multicomponent molecular orbital method. The barrier reduction by deuterium substitution was partly attributed to the difference between the wave functions of H and D atomic nuclei.

[1]
L.-H.
Xu
and
J. T.
Hougen
,
J. Mol. Spectrosc.
173
,
540
(
1995
).
[2]
L. -H.
Xu
,
R. M.
Lees
, and
J. T.
Hougen
,
J. Chem. Phys.
110
,
3835
(
1999
).
[3]
L. -H.
Xu
,
J. T.
Hougen
,
R. M.
Lees
, and
M. A.
Mekhtiev
,
J. Mol. Spectrosc.
214
,
175
(
2002
).
[4]
Y. -P.
Lee
,
Y. -J.
Wu
,
R. M.
Lees
,
L. -H.
Xu
, and
J. T.
Hougen
,
Science
311
,
365
(
2006
).
[5]
L. -H.
Xu
,
J. T.
Hougen
,
J. M.
Fisher
, and
R. M.
Lees
,
J. Mol. Spectrosc.
260
,
88
(
2010
).
[6]
L. -H.
Xu
,
J. T.
Hougen
, and
R. M.
Lees
,
J. Mol. Spectrosc.
293
,
38
(
2013
).
[7]
L. -H.
Xu
,
R. M.
Lees
,
J. T.
Hougen
,
J. M.
Bowman
,
X.
Huang
, and
S.
Carter
,
J. Mol. Spectrosc.
299
,
11
(
2014
).
[8]
S. P.
Belov
,
G. Yu.
Golubiatnikov
,
A. V.
Lapinov
,
V. V.
Ilyushin
,
E. A.
Alekseev
,
A. A.
Mescheryakov
,
J. T.
Hougen
, and
L. -H.
Xu
,
J. Chem. Phys.
145
,
024307
(
2016
).
[9]
L. -H.
Xu
,
E. M.
Reid
,
B.
Guislain
,
J. T.
Hougen
,
E. A.
Alekseev
, and
I.
Krapivin
,
J. Mol. Spectrosc.
342
,
116
(
2017
).
[10]
L. -H.
Xu
,
J. T.
Hougen
,
G. Yu.
Golubiatnikov
,
S. P.
Belov
,
A. V.
Lapinov
,
E. A.
Alekseev
,
I.
Krapivin
,
L.
Margulés
,
R. A.
Motiyenko
, and
S.
Bailleux
,
J. Mol. Spectrosc.
357
,
11
(
2019
).
[11]
D. R.
Borst
and
D. W.
Pratt
,
J. Chem. Phys.
113
,
3658
(
2000
).
[12]
M.
Baba
,
K.
Mori
,
M.
Saito
,
Y.
Kowaka
,
Y.
Noma
,
S.
Kasahara
,
T.
Yamanaka
,
K.
Okuyama
,
T.
Ishimoto
, and
U.
Nagashima
,
J. Phys. Chem. A
113
,
2366
(
2009
).
[13]
M.
Baba
,
I.
Hanazaki
, and
U.
Nagashima
,
J. Chem. Phys.
82
,
3938
(
1985
).
[14]
M.
Baba
,
U.
Nagashima
, and
I.
Hanazaki
,
J. Chem. Phys.
83
,
3514
(
1985
).
[15]
J. D.
Lewis
,
T. B.
Malloy
 Jr.
,
T. H.
Chao
, and
J.
Laane
,
J. Mol. Spectrosc.
12
,
427
(
1972
).
[16]
J. D.
Lewis
and
J.
Laane
,
J. Mol. Spectrosc.
65
,
147
(
1977
).
[17]
J. T.
Hougen
,
J. Mol. Spectrosc.
256
,
170
(
2009
).
[18]
A Program for Simulating Rotational Structure, C. M. Western, University of Bristol, http://pgopher.chm.bris.ac.uk
[19]
M.
Baba
,
M.
Saitoh
,
K.
Taguma
,
K.
Shinohara
,
K.
Yoshida
,
Y.
Semba
,
S.
Kasahara
,
N.
Nakayama
,
H.
Goto
,
T.
Ishimoto
, and
U.
Nagashima
,
J. Chem. Phys.
130
,
134315
(
2009
).
[20]
T.
Ishimoto
,
Y.
Ishihara
,
H.
Teramae
,
M.
Baba
, and
U.
Nagashima
,
J. Chem. Phys.
128
,
184309
(
2008
).
[21]
T.
Ishimoto
,
Y.
Ishihara
,
H.
Teramae
,
M.
Baba
, and
U.
Nagashima
,
J. Chem. Phys.
129
,
214116
(
2008
).
[22]
T.
Ishimoto
,
M.
Baba
,
U.
Nagashima
,
N.
Nakayama
, and
M.
Koyama
,
J. Comput. Chem. Jpn.
15
,
199
(
2016
).
[23]
M.
Tachikawa
,
K.
Mori
,
H.
Nakai
, and
K.
Iguchi
,
Chem. Phys. Lett.
290
,
437
(
1998
).
[24]
T.
Udagawa
,
T.
Tsuneda
, and
M.
Tachikawa
,
Phys. Rev.
89
,
052519
(
2014
).
[25]
T.
Udagawa
and
M.
Tachikawa
,
J. Chem. Phys.
125
,
244105
(
2006
).
[26]
M.
Nakagaki
,
E.
Nishi
,
K.
Sakota
,
H.
Nakano
, and
H.
Sekiya
,
Chem. Phys.
328
,
190
(
2006
).
This content is only available via PDF.
You do not currently have access to this content.