Experimental vibrational spectra of heavy light XH stretching vibrations of simple molecules have been analyzed using the local mode model. In addition, the bond dipole approach, which assumes that the transition dipole moment (TDM) of the XH stretching mode is aligned along the XH bond, has helped analyze experimental spectra. We performed theoretical calculations of the XH stretching vibrations of HOD, HND, HCD, HSD, HPD, and HSiD using local mode model and multi-dimensional normal modes. We found that consistent with previous notions, a localized 1D picture to treat the XH stretching vibration is valid even for analyzing the TDM tilt angle. In addition, while the TDM of the OH stretching fundamental transition tilted away from the OH bond in the direction away from the OD bond, that for the XH stretching fundamental of HSD, HND, HPD, HCD, and HSiD tilted away from the OH bond but toward the OD bond. This shows that bond dipole approximation may not be a good approximation for the present systems and that the heavy atom X can affect the transition dipole moment direction. The variation of the dipole moment was analyzed using the atoms-in-molecule method.

[1]
B. R.
Henry
,
Acc. Chem. Res.
10
,
207
(
1977
).
[2]
B. R.
Henry
,
Acc. Chem. Res.
20
,
429
(
1987
).
[3]
M. S.
Child
,
Acc. Chem. Res
18
,
45
(
1985
).
[4]
[5]
H. G.
Kjaergaard
,
J. D.
Goddard
, and
B. R.
Henry
,
J. Chem. Phys.
95
,
5556
(
1991
).
[6]
H. G.
Kjaergaard
and
B. R.
Henry
,
J. Chem. Phys.
96
,
4841
(
1992
).
[7]
B.
Timm
and
R.
Mecke
,
Z. Phys.
98
,
363
(
1936
).
[8]
I.
Schek
,
J.
Jortner
, and
M. L.
Sage
,
Chem. Phys. Lett.
64
,
209
(
1979
).
[9]
Q.
Du
,
R.
Superfine
,
E.
Freysz
, and
Y. R.
Shen
,
Phys. Rev. Lett.
70
,
2313
(
1993
).
[10]
Y.
Wang
,
N. O.
Hodas
,
Y.
Jung
, and
R. A.
Marcus
,
Phys. Chem. Chem. Phys.
13
,
5388
(
2011
).
[11]
A.
Amrein
,
H. R.
Dubal
,
M.
Lewerenz
, and
M.
Quack
,
Chem. Phys. Lett.
112
,
387
(
1984
).
[12]
J. R.
Fair
,
O.
Votava
, and
D. J.
Nesbitt
,
J. Chem. Phys.
108
,
72
(
1998
).
[13]
S. H.
Bauer
and
R. M.
Badger
,
J. Chem. Phys.
5
,
852
(
1937
).
[14]
D.
Hurtmans
,
F.
Herregodts
,
M.
Herman
,
J.
Liévin
,
A.
Campargue
,
A.
Garnache
, and
A. A.
Kachanov
,
J. Chem. Phys.
113
,
1535
(
2000
).
[15]
S.
Ishiuchi
,
M.
Fujii
,
T. W.
Robinson
,
B. J.
Miller
, and
H. G.
Kjaergaard
,
J. Phys. Chem. A
110
,
7345
(
2006
).
[16]
I. M.
Konen
,
E. X. J.
Li
,
M. I.
Lester
,
J.
Vázquez
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
074310
(
2006
).
[17]
K.
Takahashi
,
M.
Sugawara
, and
S.
Yabushita
,
J. Phys. Chem. A
107
,
11092
(
2003
).
[18]
K.
Takahashi
,
M.
Sugawara
, and
S.
Yabushita
,
J. Phys. Chem. A
109
,
4242
(
2005
).
[19]
E.
Whalley
and
D. D.
Klug
,
J. Chem. Phys.
84
,
78
(
1986
).
[20]
K.
Takahashi
,
J. Mol. Spectrosc.
363
,
111171
(
2019
).
[21]
K.
Takahashi
,
M.
Sugawara
, and
S.
Yabushita
,
J. Phys. Chem. A
106
,
2676
(
2002
).
[22]
E. B.
Wilson
 Jr.
,
J. C.
Decious
, and
P. C.
Cross
,
Molecular Vibrations
,
New York
:
Dover
(
1955
).
[23]
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J.
Montgomery
, J. A.,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
,
Gaussian 03 (Revision B.01)
,
Pittsburgh, PA
:
Gaussian Inc.
, (
2009
).
[24]
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
[25]
M.
Morita
and
K.
Takahashi
,
Phys. Chem. Chem. Phys.
15
,
14973
(
2013
).
[26]
M.
Morita
and
K.
Takahashi
,
Phys. Chem. Chem. Phys.
15
,
114
(
2013
).
[27]
P. W.
Atkins
and
R. S.
Friedman
,
Molecular Quantum Mechanics
,
Oxford
:
Oxford Press
, (
2011
).
[28]
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
[29]
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
[30]
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
[31]
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
[32]
T. H.
Dunning
,
K. A.
Peterson
, and
A. K.
Wilson
,
J. Chem. Phys.
114
,
9244
(
2001
).
[33]
R. J.
Bartlett
and
G.
Purvis
,
Int. J. Quantum. Chem.
XIV
,
561
(
1978
).
[34]
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
,
Int. J. Quant. Chem.
124
,
11802
(
1978
).
[35]
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
[36]
https://cccbdb.nist.gov/ (last accessed 10/15/19).
[37]
X.
Huang
and
T. J.
Lee
,
J. Chem. Phys.
131
,
104301
(
2009
).
[38]
R. F. W.
Bader
,
Atoms in Molecules. A Quantum Theory
,
New York
:
Oxford University Press
, (
1990
).
[39]
R. L. a
Haiduke
and
R. E.
Bruns
,
J. Phys. Chem. A
109
,
2680
(
2005
).
[40]
A. F.
Silva
,
W. E.
Richter
,
H. G. C.
Meneses
,
S. H. D. M.
Faria
, and
R. E.
Bruns
,
J. Phys. Chem. A
116
,
8238
(
2012
).
[41]
T.
Hirano
,
U.
Nagashima
, and
P.
Jensen
,
J. Mol. Spectrosc.
343
,
54
(
2018
).
[42]
T.
Hirano
,
U.
Nagashima
,
P.
Jensen
, and
H.
Li
,
J. Mol. Spectrosc.
362
,
29
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.