The radiation damage of biomolecules, in particular with aliphatic compound, has been extensively studied. Morpholine is a typical six-membered aliphatic heterocyclic compound. In the present work, photoionization and dissociation of the morpholine monomer and subsequent fragmentations have been investigated by synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. The vertical ionization energy of morpholine monomer is 8.37±0.05 eV, which agrees reasonably well with a theo-retical value 8.41 eV of morpholine. Experimentally observed fragmentation of morpholine (m/z=87 amu) gives rise to m/z=86 amu, m/z=57 amu, and m/z=29 amu. Based on experimental and theoretical results, it is found that the m/z=86 amu is produced by losing H atom, the m/z=57 amu is formed by the elimination of CH2O with a ring-opening process, the m/z=29 amu is generated by further dissociation of the fragment m/z=57 amu (C3H7N)+ by the elimination of C2H4. This finding would provide valuable insight into the photo-damage of aliphatic compounds, which may be related to living cells and other biological system.

[1]
M.
Wlaschek
,
I.
Tantcheva-Poór
,
L.
Naderi
,
W.
Ma
,
L. A.
Schneider
,
Z.
Razi-Wolf
,
J.
Schüller
, and
K.
Scharffetter-Kochanek
,
J. Photoch. Photobio. B
63
,
41
(
2001
).
[2]
L.
Dicelio
and
I.
Joekes
,
Photoch. Photobio. Sci.
5
,
165
(
2006
).
[3]
M. F.
Barbe
,
M.
Tytell
,
D. J.
Gower
, and
W. J.
Welch
,
Science
241
,
1817
(
1988
).
[4]
R. E.
Marc
,
B.
Jones
,
C.
Watt
,
F.
Vazquez-Chona
,
D.
Vaughan
, and
D.
Organisciak
,
Mol. Vis.
14
,
782
(
2008
).
[5]
D. T.
Organisciak
and
D. K.
Vaughan
,
Prog. Retin. Eye Res.
29
,
113
(
2010
).
[6]
S.
Takahashi
and
M. R.
Badger
,
Trends Plant Sci.
16
,
53
(
2011
).
[7]
D.
Fuller
,
R.
Machemer
, and
R. W.
Knighton
,
Vis. Res.
20
,
1055
(
1980
).
[8]
D. T.
Organisciak
,
R. M.
Darrow
,
L.
Barsalou
,
R. A.
Darrow
,
R. K.
Kutty
,
G.
Kutty
, and
B.
Wiggert
,
Invest. Ophth. Vis. Sci.
39
,
1107
(
1998
).
[9]
J. S.
Penn
,
M. I.
Naash
, and
R. E.
Anderson
,
Exp. Eye Res.
44
,
779
(
1987
).
[10]
T. A. A.
Oliver
,
G. A.
King
, and
M. N. R.
Ashfold
,
Chem. Sci.
1
,
89
(
2010
).
[11]
G.
Assaf
,
G.
Cansell
,
D.
Critcher
,
S.
Field
,
S.
Hayes
,
S.
Mathew
, and
A.
Pettman
,
Tetrahedron Lett.
51
,
5048
(
2010
).
[12]
H.
Zhan
,
Y.
Hu
,
P.
Wang
, and
J.
Chen
,
Rsc Adv.
7
,
6179
(
2017
).
[13]
J. J.
Sloan
and
R.
Kewley
,
Can. J. Chem.
47
,
3453
(
1969
).
[14]
J. U.
Grabow
,
H.
Ehrlichmann
, and
H.
Dreizler
,
J. Phys. Sci.
44
,
833
(
1989
).
[15]
N. L.
Allinger
and
J. C.
Tai
,
J. Am. Chem. Soc.
87
,
2081
(
1965
).
[16]
R. W.
Baldock
and
A. R.
Katritzky
,
Tetrahedron Lett.
9
,
1159
(
1968
).
[17]
M.
Xie
,
G.
Zhu
,
Y.
Hu
, and
H.
Gu
,
J. Phys. Chem. C
115
,
20596
(
2011
).
[18]
K.
Vékey
, Role of Internal Energy in Mass Spectrometric Fragmentation,
Netherlands
:
Springer
, (
1997
).
[19]
Y. J.
Shi
,
S.
Consta
,
A. K.
Das
,
B.
Mallik
,
D.
Lacey
, and
R. H.
Lipson
,
J. Chem. Phys.
116
,
6990
(
2002
).
[20]
M.
Dampc
and
M.
Zubek
,
Int. J. Mass Spectrom.
277
,
52
(
2008
).
[21]
D.
Ghosh
,
A.
Golan
,
L. K.
Takahashi
,
A. I.
Krylov
, and
M.
Ahmed
,
J. Phys. Chem. Lett.
3
,
97
(
2012
).
[22]
G.
Vall-Llosera
,
M.
Coreno
,
P.
Erman
,
M. A.
Huels
,
K.
Jakubowska
,
A.
Kivimäki
,
E.
Rachlew
, and
M.
Stankiewicz
,
Int. J. Mass Spectrom.
275
,
55
(
2008
).
[23]
J.
Guan
,
Y.
Hu
,
H.
Zou
,
L.
Cao
,
F.
Liu
,
X.
Shan
, and
L.
Sheng
,
J. Chem. Phys.
137
,
124308
(
2012
).
[24]
Y.
Tao
,
Y.
Hu
,
W.
Xiao
,
J.
Guan
,
F.
Liu
,
X.
Shan
, and
L.
Sheng
,
Phys. Chem. Chem. Phys.
18
,
13554
(
2016
).
[25]
I.
Polikarpov
,
L. A.
Perles
,
R. T.
de Oliveira
,
G.
Oliva
,
E. E.
Castellano
,
R. C.
Garratt
, and
A.
Craievich
,
J. Synchrotron Radiat.
5
,
72
(
2010
).
[26]
C. C.
Kao
,
K.
Hamalainen
,
M.
Krisch
,
D. P.
Siddons
,
T.
Oversluizen
, and
J. B.
Hastings
,
Rev. Sci. Instrum.
66
,
1699
(
1995
).
[27]
Z.
Wu
,
W.
Zhao
,
H.
Zhang
,
B.
Liu
,
Y.
Xie
, and
J.
Hao
,
Nucl Tech.
9
,
684
(
2009
).
[28]
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
 Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Regna
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian 09,
Wallingford CT
:
Gaussian, Inc.
, (
2009
).
[29]
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
[30]
J. J.
Stewart
, Stewart Computational Chemistry,
Colorado Springs, CO
,
USA
(
2012
).
[31]
F.
Neese
,
WIRES Comput. Mol. Sci.
2
,
73
(
2012
).
[32]
J. S.
Binkley
and
J. A.
Pople
,
Int. J. Quantum Chem.
9
,
229
(
1975
).
[33]
X.
Liu
,
W.
Zhang
,
Z.
Wang
,
M.
Huang
,
X.
Yang
,
L.
Tao
,
Y.
Sun
,
Y.
Xu
,
X.
Shan
and
F.
Liu
,
J. Mass Spectrom.
44
,
404
(
2010
).
[34]
Y.
Pan
,
L.
Zhang
,
T.
Zhang
,
H.
Guo
,
X.
Hong
,
L.
Sheng
, and
F.
Qi
,
Phys. Chem. Chem. Phys.
11
,
1189
(
2009
).
[35]
P.
Politzer
and
F.
Abu-Awwad
,
Theor. Chem. Acc.
99
,
83
(
1998
).
[36]
P.
Politzer
,
J. S.
Murray
, and
F. A.
Bulat
,
J. Mol. Model.
16
,
1731
(
2010
).
[37]
R.
Stowasser
and
R.
Hoffmann
,
J. Am. Chem. Soc.
121
,
3414
(
1999
).
[38]
W.
Li
,
Y.
Hu
,
J.
Guan
,
F.
Liu
,
X.
Shan
, and
L.
Sheng
,
J. Chem. Phys.
139
,
024307
(
2013
).
[39]
W.
Xiao
,
Y.
Hu
,
W.
Li
,
J.
Guan
,
F.
Liu
,
X.
Shan
, and
L.
Sheng
,
J. Chem. Phys.
142
,
024306
(
2015
).
[40]
Q.
Li
,
Q.
Ran
,
C.
Chen
,
S.
Yu
,
X.
Ma
,
L.
Sheng
,
Y.
Zhang
, and
W. K.
Li
,
Int. J. Mass Spectrom. Ion Proc.
153
,
29
(
1996
).
[41]
T.
Baer
,
B.
Sztáray
,
J. P.
Kercher
,
A. F.
Lago
,
A.
Bödi
,
C.
Skull
, and
D.
Palathinkal
,
Phys. Chem. Chem. Phys.
7
,
1507
(
2005
).
[42]
B.
Hornung
,
A.
Bödi
,
C. I.
Pongor
,
Z.
Gengeliczki
,
T.
Baer
, and
B.
Sztáray
,
J. Phys. Chem. A
113
,
8091
(
2009
).
[43]
B.
Sztáray
,
A.
Bödi
, and
T.
Baer
,
J. Mass Spectrom.
45
,
1233
(
2010
).
[44]
M.
Xie
,
Y.
Matsuda
, and
A.
Fujii
,
J. Phys. Chem. A
119
,
5668
(
2015
).
[45]
P.
Carçabal
,
R.
Jockusch
,
I.
Hünig
,
L.
Snoek
,
R. T.
Kroemer
,
B.
Davis
,
D.
Gamblin
,
I.
Compagnon
,
J.
Oomens
, and
J.
Simons
,
J. Am. Chem. Soc.
127
,
11414
(
2005
).
[46]
T.
Shi
,
D.
Yang
,
Q.
Zhu
,
J.
Ge
,
P.
Bai
,
L.
Sheng
,
G.
Wu
, and
Y.
Zhang
,
Phys. Chem. Chem. Phys.
6
,
2281
(
2004
).
[47]
T.
Shi
,
J.
Ge
,
J.
Guo
, and
Q.
Zhu
,
Chem. Phys. Lett.
397
,
160
(
2004
).
[48]
T.
Shi
,
J.
Ge
,
Y.
Zhang
, and
Q.
Zhu
,
J. Chem. Phys.
120
,
8453
(
2004
).
[49]
L. N.
Domelsmith
and
K. N.
Houk
,
Tetrahedron Lett.
23
,
1981
(
1977
).
[50]
V.
Galasso
and
F.
Pichierri
,
J. Phys. Chem. A
113
,
2534
(
2009
).
[51]
R.
Parthasarathi
,
Y.
He
,
J. P.
Reilly
, and
K.
Raghavachari
,
J. Am. Chem. Soc.
132
,
1606
(
2010
).
[52]
Y.
Zhao
,
J.
Yuan
,
X.
Ding
,
S.
He
, and
W.
Zheng
,
Phys. Chem. Chem. Phys.
13
,
10084
(
2011
)
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.