The hydrogen abstraction reaction F+CH3OH has two possible reaction pathways: HF+CH3O and HF+CH2OH. Despite the absence of intrinsic barriers for both channels, the former has a branching ratio comparable to the latter, which is far from the statistical limit of 0.25 (one out of four available H atoms). Furthermore, the measured branching ratio of the two abstraction channels spans a large range and is not quantitatively reproduced by previous theoretical predictions based on the transition-state theory with the stationary point information calculated at the levels of Møller-Plesset perturbation theory and G2. This work reports a theoretical investigation on the kinetics and the associated branching ratio of the two competing channels of the title reaction using a quasi-classical trajectory approach on an accurate full-dimensional potential energy surface (PES) fitted by the permutation invariant polynomial-neural network approach to ca. 1.21 × 105 points calculated at the explicitly correlated (F12a) version of coupled cluster singles doubles and perturbative triples (CCSD(T)) level with the aug-cc-pVDZ basis set. The calculated room temperature rate coefficient and branching ratio of the HF+CH3O channel are in good agreement with the available experimental data. Furthermore, our theory predicts that rate coefficients have a slightly negative temperature dependence, consistent with barrierless nature of the reaction.

[1]
C.
Murray
and
A. J.
Orr-Ewing
,
Int. Rev. Phys. Chem.
23
,
435
(
2004
).
[2]
B.
Joalland
,
Y.
Shi
,
A. D.
Estillore
,
A.
Kamasah
,
A. M.
Mebel
, and
A. G.
Suits
,
J. Phys. Chem. A
118
,
9281
(
2014
).
[3]
J.
Xie
,
R.
Otto
,
J.
Mikosch
,
J.
Zhang
,
R.
Wester
, and
W. L.
Hase
,
Acc. Chem. Res.
47
,
2960
(
2014
).
[4]
H.
Pan
,
K.
Liu
,
A.
Caracciolo
, and
P.
Casavecchia
,
Chem. Soc. Rev.
46
,
7517
(
2017
).
[5]
K.
Hoyermann
,
N. S.
Loftfield
,
R.
Sievert
, and
H. G.
Wagner
,
Symp. Combus.
18
,
831
(
1981
).
[7]
D. J.
Smith
,
D. W.
Setser
,
K. C.
Kim
, and
D. J.
Bogan
,
J. Phys. Chem.
81
,
898
(
1977
).
[8]
R. G.
Macdonald
,
J. J.
Sloan
, and
P. T.
Wassell
,
Chem. Phys.
41
,
201
(
1979
).
[9]
B.
Dill
and
H.
Heydtmann
,
Chem. Phys.
54
,
9
(
1980
).
[10]
U.
Meier
,
H. H.
Grotheer
, and
T.
Just
,
Chem. Phys. Lett.
106
,
97
(
1984
).
[11]
J. M.
Dyke
,
A. R.
Ellis
,
N.
Jonathan
,
N.
Keddar
, and
A.
Morris
,
Chem. Phys. Lett.
111
,
207
(
1984
).
[12]
B. S.
Agrawalla
and
D. W.
Setser
,
J. Phys. Chem.
88
,
657
(
1984
).
[13]
B. S.
Agrawalla
and
D. W.
Setser
,
J. Phys. Chem.
90
,
2450
(
1986
).
[14]
M. A.
Wickramaaratchi
,
D. W.
Setser
,
H.
Hildebrandt
,
B.
Korbitzer
, and
H.
Heydtmann
,
Chem. Phys.
94
,
109
(
1985
).
[15]
T.
Khatoon
and
K.
Hoyermann
,
Ber. Bunsenges. Phys. Chem.
92
,
669
(
1988
).
[16]
P.
Pagsberg
,
J.
Munk
,
A.
Sillesen
, and
C.
Anastasi
,
Chem. Phys. Lett.
146
,
375
(
1988
).
[17]
J. A.
McCaulley
,
N.
Kelly
,
M. F.
Golde
, and
F.
Kaufman
,
J. Phys. Chem.
93
,
1014
(
1989
).
[18]
D. J.
Bogan
,
M.
Kaufman
,
C. W.
Hand
,
W. A.
Sanders
, and
B. E.
Brauer
,
J. Phys. Chem.
94
,
8128
(
1990
).
[19]
S. E.
Bradforth
,
D. W.
Arnold
,
R. B.
Metz
,
A.
Weaver
, and
D. M.
Neumark
,
J. Phys. Chem.
95
,
8066
(
1991
).
[20]
J. L.
Durant
,
J. Phys. Chem.
95
,
10701
(
1991
).
[21]
W. A.
Glauser
and
M. L.
Koszykowski
,
J. Phys. Chem.
95
,
10705
(
1991
).
[22]
S.
Dóbé
,
T.
Bérces
,
F.
Temps
,
H. G.
Wagner
, and
H.
Ziemer
,
Symp. Combus.
25
,
775
(
1994
).
[23]
P.
Biggs
,
C. E.
Canosa-Mas
,
J. M.
Fracheboud
,
D. E.
Shallcross
, and
R. P.
Wayne
,
J. Chem. Soc., Faraday. Trans.
93
,
2481
(
1997
).
[24]
J. T.
Jodkowski
,
M. T.
Rayez
,
J. C.
Rayez
,
T.
Berces
, and
S.
Dobe
,
J. Phys. Chem. A
102
,
9219
(
1998
).
[25]
H.
Feng
,
K. R.
Randall
, and
H. F.
Schaefer
 III
,
J. Phys. Chem. A
119
,
1636
(
2015
).
[26]
A. W.
Ray
,
J.
Agarwal
,
B. B.
Shen
,
H. F.
Schaefer
 III
, and
R. E.
Continetti
,
Phys. Chem. Chem. Phys.
18
,
30612
(
2016
).
[27]
E.
Assaf
,
C.
Schoemaecker
,
L.
Vereecken
, and
C.
Fittschen
,
Phys. Chem. Chem. Phys.
20
,
10660
(
2018
).
[28]
M. L.
Weichman
,
J. A.
DeVine
,
M. C.
Babin
,
J.
Li
,
L.
Guo
,
J.
Ma
,
H.
Guo
, and
D. M.
Neumark
,
Nat. Chem.
9
,
950
(
2017
).
[29]
R.
Otto
,
J.
Ma
,
A. W.
Ray
,
J. S.
Daluz
,
J.
Li
,
H.
Guo
, and
R. E.
Continetti
,
Science
343
,
396
(
2014
).
[30]
J.
Ma
and
H.
Guo
,
J. Phys. Chem. Lett.
6
,
4822
(
2015
).
[31]
B.
Jiang
,
J.
Li
, and
H.
Guo
,
Int. Rev. Phys. Chem.
3
,
479
(
2016
).
[32]
D. H.
Zhang
and
H.
Guo
,
Annu. Rev. Phys. Chem.
67
,
135
(
2016
).
[33]
X.
Hu
,
W. L.
Hase
, and
T.
Pirraglia
,
J. Comp. Chem.
12
,
1014
(
1991
).
[34]
G.
Knizia
,
T. B.
Adler
, and
H. J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
[35]
B.
Jiang
and
H.
Guo
,
J. Chem. Phys.
139
,
054112
(
2013
).
[36]
J.
Li
,
B.
Jiang
, and
H.
Guo
,
J. Chem. Phys.
139
,
204103
(
2013
).
[37]
J.
Li
,
Y.
Li
, and
H.
Guo
,
J. Chem. Phys.
138
,
141102
(
2013
).
[38]
Y. V.
Suleimanov
,
F. J.
Aoiz
, and
H.
Guo
,
J. Phys. Chem. A
120
,
8488
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.