The reaction dynamics of the fluorine atom with vibrationally excited D2(v=1, j=0) was investigated using the crossed beam method. The scheme of stimulated Raman pumping was employed for preparation of vibrationally excited D2 molecules. Contribution from the reaction of spin-orbit excited F*(2P1/2) with vibrationally excited D2 was not found. Reaction of spin-orbit ground F(2P3/2) with vibrationally excited D2 was measured and DF products populated in v′=2, 3, 4, 5 were observed. Compared with the vibrationally ground reaction, DF products from the vibrationally excited reaction of F(2P3/2)+D2(v=1, j=0) are rotationally “hotter”. Differential cross sections at four collision energies, ranging from 0.32 kcal/mol to 2.62 kcal/mol, were obtained. Backward scattering dominates for DF products in all vibrational levels at the lowest collision energy of 0.32 kcal/mol. As the collision energy increases, angular distribution of DF products gradually shifts from backward to sideway. The collision-energy dependence of differential cross section of DF(v′=5) at forward direction was also measured. Forward-scattered signal of DF(v′=5) appears at the collision energy of 1.0 kcal/mol, and becomes dominated at 2.62 kcal/mol.

[1]
T. P.
Schafer
,
P. E.
Siska
,
J. M.
Parson
,
F. P.
Tully
,
Y. C.
Wong
, and
Y. T.
Lee
,
J. Chem. Phys.
35
,
3385
(
1970
).
[2]
D. M.
Neumark
,
A. M.
Wodtke
,
G. N.
Robinson
,
C. C.
Hayden
,
K.
Shobateke
,
R. K.
Sparks
,
T. P.
Schafer
, and
Y. T.
Lee
,
J. Chem. Phys.
82
,
3067
(
1985
).
[3]
M.
Faubel
,
L.
Rusin
,
S.
Schlemmer
,
F.
Sondermann
,
U.
Tappe
, and
J. P.
Toennies
,
J. Chem. Phys.
101
,
2106
(
1994
).
[4]
M.
Faubel
,
B.
Martínez-Haya
,
L. Y.
Rusin
,
U.
Tappe
, and
J. P.
Toennies
,
J. Phys. Chem. A
101
,
6415
(
1997
).
[5]
M.
Faubel
,
B.
Martínez-Haya
,
L. Y.
Rusin
,
U.
Tappe
, and
J. P.
Toennies
,
Chem. Phys. Lett.
232
,
197
(
1995
).
[6]
M.
Faubel
,
B.
Martínez-Haya
,
L. Y.
Rusin
,
U.
Tappe
,
J. P.
Toennies
,
F. J.
Aoiz
, and
L.
Banares
,
J. Phys. Chem. A
102
,
8695
(
1998
).
[7]
L.
Che
,
Z.
Ren
,
X.
Wang
,
W.
Dong
,
D.
Dai
,
X.
Wang
,
D.
Zhang
,
X.
Yang
,
L.
Sheng
,
G.
Li
,
H.
Werner
,
F.
Lique
, and
M. H.
Alexander
,
Science
317
,
1061
(
2006
).
[8]
J. C.
Polanyi
,
Acc. Chem. Res.
5
,
161
(
1972
).
[9]
F. F.
Crim
,
Acc. Chem. Res.
32
,
877
(
1999
).
[10]
M. J.
Bronikowski
,
W. R.
Simpson
, and
R. N.
Zare
,
J. Phys. Chem.
97
,
2204
(
1993
).
[11]
S.
Yan
,
Y. T.
Wu
,
B.
Zhang
,
X. F.
Yue
, and
K.
Liu
,
Science
316
,
1723
(
2007
).
[12]
W.
Zhang
,
H.
Kawamata
, and
K.
Liu
,
Science
325
,
303
(
2009
).
[13]
F.
Wang
,
J.
Lin
, and
K.
Liu
,
Science
331
,
900
(
2011
).
[14]
F.
Wang
,
K.
Liu
, and
T.
Rakitzis
,
Nat. Chem.
4
,
636
(
2017
).
[15]
T.
Wang
,
T.
Yang
,
C.
Xiao
,
D.
Dai
, and
X.
Yang
,
J. Phys. Chem. Lett.
4
,
368
(
2013
).
[16]
T.
Wang
,
T.
Yang
,
C.
Xiao
,
D.
Dai
, and
X.
Yang
,
Chin. J. Chem. Phys.
26
,
8
(
2013
).
[17]
T.
Yang
,
L.
Huang
,
T.
Wang
,
C.
Xiao
,
D.
Dai
, and
X.
Yang
,
Chin. J. Chem. Phys.
30
,
614
(
2017
).
[18]
T.
Wang
,
J.
Chen
,
T.
Yang
,
C.
Xiao
,
Z.
Sun
,
L.
Huang
,
D.
Dai
,
X.
Yang
, and
D.
Zhang
,
Science
342
,
1499
(
2013
).
[19]
T.
Yang
,
J.
Chen
,
L.
Huang
,
T.
Wang
,
C.
Xiao
,
Z.
Sun
,
D.
Dai
,
X.
Yang
, and
D.
Zhang
,
Science
347
,
60
(
2015
).
[20]
T.
Yang
,
L.
Huang
,
T.
Wang
,
C.
Xiao
,
Y.
Xie
,
Z.
Sun
,
D.
Dai
,
M.
Chen
,
D.
Zhang
, and
X.
Yang
,
J. Phys. Chem. A
119
,
12284
(
2015
).
[21]
M.
Qiu
,
L.
Che
,
Z.
Ren
,
D.
Dai
,
X.
Wang
, and
X.
Yang
,
Rev. Sci. Instrum.
76
,
083107
(
2006
)
[22]
Z.
Ren
,
M.
Qiu
,
L.
Che
,
D.
Dai
,
X.
Wang
, and
X.
Yang
,
Rev. Sci. Instrum.
77
,
016102
(
2006
).
[23]
X.
Wang
,
W.
Dong
,
M.
Qiu
,
Z.
Ren
,
L.
Che
,
D.
Dai
,
X.
Wang
,
X.
Yang
,
Z.
Sun
,
B.
Fu
,
S.
Lee
,
X.
Xu
, and
D.
Zhang
,
Proc. Natl. Acad. Sci. USA
105
,
6227
(
2007
).
[24]
D.
Neumark
,
A.
Wodtke
,
G.
Robinson
,
C.
Hayden
, and
Y.
Lee
,
J. Chem. Phys.
82
,
3045
(
1985
).
[25]
J.
Castillo
,
D.
Manolopoulos
,
K.
Stark
, and
H.
Werner
,
J. Chem. Phys.
104
,
6531
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.