The mode specificity plays an important role in understanding the fundamental reaction dynamics. This work reports a theoretical study of the rotational mode specificity of the reactant CHD3(JK) in the prototypical hydrocarbon oxidation reaction O(3P)+CHD3→OH+CD3. The time-dependent quantum wave packet method combined with a seven-dimensional reduced model is employed to calculate the reaction probability on an accurate potential energy surface. The obtained reaction probability depends on the values of both K and Ktot with PKtot = K = 0 > PKtot = K = J > PKtot = J,K = 0 = PKtot = 0,K = J. This observation can be well rationalized by the reactant alignment pictures. Rotational excitations of CHD3 up to the angular momentum quantum number J = 4 have a very weak enhancement effect on the reaction except for the state (J = 4, K = 0). In addition, the rotationally excited states of CHD3 with K = 0 promote the reaction more than those with K = J. The quantum dynamics calculations indicate that the K = 0 enhancements are mainly caused by the contributions from the components with K = Ktot = 0. The components correspond to the tumbling rotation of CHD3, which enlarges the range of the reactive initial attack angles.

[2]
H.
Guo
and
K.
Liu
,
Chem. Sci.
7
,
3992
(
2016
).
[3]
B.
Fu
,
X.
Shan
,
D. H.
Zhang
, and
D. C.
Clary
,
Chem. Soc. Rev.
46
,
7625
(
2017
).
[4]
D. H.
Zhang
and
H.
Guo
,
Annu. Rev. Phys. Chem.
67
,
135
(
2016
).
[5]
F. F.
Crim
,
Acc. Chem. Res.
32
,
877
(
1999
).
[6]
F. F.
Crim
,
Proc. Natl. Acad. Sci. USA
105
,
12654
(
2008
).
[7]
D. C.
Clary
,
Proc. Natl. Acad. Sci. USA
105
,
12649
(
2008
).
[8]
R.
Welsch
and
U.
Manthe
,
J. Chem. Phys.
141
,
051102
(
2014
).
[9]
J. C.
Polanyi
,
Acc. Chem. Res.
5
,
161
(
1972
).
[10]
D. H.
Zhang
and
S. Y.
Lee
,
J. Chem. Phys.
109
,
2708
(
1998
).
[11]
U.
Manthe
and
F.
Matzkies
,
J. Chem. Phys.
113
,
5725
(
2000
).
[12]
A.
Miklavc
,
M.
Perdih
, and
I. W. M.
Smith
,
J. Chem. Phys.
112
,
8813
(
2000
).
[13]
D. H.
Zhang
and
S. Y.
Lee
,
J. Chem. Phys.
112
,
203
(
2000
).
[14]
Y.
Xu
,
B.
Xiong
,
Y. C.
Chang
, and
C. Y.
Ng
,
J. Chem. Phys.
139
,
024203
(
2013
).
[15]
B.
Jiang
,
J.
Li
, and
H.
Guo
,
J. Chem. Phys.
140
,
034112
(
2014
).
[16]
R.
Liu
,
F.
Wang
,
B.
Jiang
,
G.
Czakó
,
M.
Yang
,
K.
Liu
, and
H.
Guo
,
J. Chem. Phys.
141
,
074310
(
2014
).
[17]
H.
Pan
,
J.
Yang
,
F.
Wang
, and
K.
Liu
,
J. Phys. Chem. Lett.
5
,
3878
(
2014
).
[18]
H.
Song
and
H.
Guo
,
J. Chem. Phys.
141
,
244311
(
2014
).
[19]
H.
Song
,
J.
Li
,
B.
Jiang
,
M.
Yang
,
Y.
Lu
, and
H.
Guo
,
J. Chem. Phys.
140
,
084307
(
2014
).
[20]
Z.
Zhang
and
D. H.
Zhang
,
J. Chem. Phys.
141
,
144309
(
2014
).
[21]
J.
Espinosa-Garcia
,
C.
Rangel
, and
J. C.
Corchado
,
Theor. Chem. Acc.
135
,
1
(
2015
).
[22]
H.
Song
and
H.
Guo
,
J. Phys. Chem. A
119
,
6188
(
2015
).
[23]
I.
Szabó
and
G.
Czakó
,
J. Phys. Chem. A
119
,
12231
(
2015
).
[24]
F.
Wang
,
H.
Pan
, and
K.
Liu
,
J. Phys. Chem. A
119
,
11983
(
2015
).
[25]
H.
Song
,
A.
Li
, and
H.
Guo
,
J. Phys. Chem. A
120
,
4742
(
2016
).
[26]
B. L.
Yoder
,
R.
Bisson
, and
R. D.
Beck
,
Science
329
,
553
(
2010
).
[27]
B.
Jiang
and
H.
Guo
,
J. Phys. Chem. C
120
,
8220
(
2016
).
[28]
G.
Füchsel
,
P. S.
Thomas
,
J.
den Uyl
,
Y.
Öztürk
,
F.
Nattino
,
H. D.
Meyer
, and
G. J.
Kroes
,
Phys. Chem. Chem. Phys.
18
,
8174
(
2016
).
[30]
H. A.
Bechtel
,
J. P.
Camden
,
D. J. A.
Brown
,
M. R.
Martin
,
R. N.
Zare
, and
K.
Vodopyanov
,
Angew. Chem. Int. Ed.
44
,
2382
(
2005
).
[31]
T.
Westermann
,
J. B.
Kim
,
M. L.
Weichman
,
C.
Hock
,
T. I.
Yacovitch
,
J.
Palma
,
D. M.
Neumark
, and
U.
Manthe
,
Angew. Chem. Int. Ed.
53
,
1122
(
2014
).
[32]
G.
Czakó
and
J. M.
Bowman
,
J. Phys. Chem. A
118
,
2839
(
2014
).
[34]
I. M.
Campbell
,
Energy and the Atmosphere: a Physical-Chemical Approach
,
London
:
John Wiley
, (
1977
).
[35]
W. C.
Gardiner
 Jr.
,
Combustion Chemistry
,
Berlin
:
Springer
(
1984
).
[36]
D. L.
Baulch
,
C. J.
Cobos
,
R. A.
Cox
,
C.
Esser
,
P.
Frank
,
T.
Just
,
J. A.
Kerr
,
M. J.
Pilling
,
J.
Troe
,
R. W.
Walker
, and
J.
Warnatz
,
J. Phys. Chem. Ref. Data
21
,
411
(
1992
).
[37]
D. C.
Clary
,
Phys. Chem. Chem. Phys.
1
,
1173
(
1999
).
[38]
H. G.
Yu
and
G.
Nyman
,
J. Chem. Phys.
112
,
238
(
1999
).
[39]
R.
Sayós
,
J.
Hernando
,
M. A. P.
Puyuelo
,
P. A.
Enríquez
, and
M.
González
,
Chem. Phys. Lett.
341
,
608
(
2001
).
[40]
F.
Huarte-Larranaga
and
U.
Manthe
,
J. Chem. Phys.
117
,
4635
(
2002
).
[41]
B.
Kerkeni
and
D. C.
Clary
,
J. Phys. Chem. A
107
,
10851
(
2003
).
[42]
Q.
Cui
,
M. L.
Wang
, and
J. Z. H.
Zhang
,
Chem. Phys. Lett.
410
,
115
(
2005
).
[43]
M.
Yang
,
S. Y.
Lee
, and
D. H.
Zhang
,
J. Chem. Phys.
126
,
064303
(
2007
).
[44]
R.
Martnez
,
P. A.
Enrquez
,
M. P.
Puyuelo
, and
M.
González
,
J. Phys. Chem. A
116
,
5026
(
2012
).
[45]
Y.
Li
,
Y. V.
Suleimanov
,
M.
Yang
,
W. H.
Green
, and
H.
Guo
,
J. Phys. Chem. Lett.
4
,
48
(
2013
).
[46]
E.
González-Lavado
,
J. C.
Corchado
, and
J.
Espinosa-Garcia
,
J. Chem. Phys.
140
,
064310
(
2014
).
[47]
G. M.
Sweeney
,
A.
Watson
, and
K. G.
McKendrick
,
J. Chem. Phys.
106
,
9172
(
1997
).
[48]
G. M.
Sweeney
and
K. G.
McKendrick
,
J. Chem. Phys.
106
,
9182
(
1997
).
[49]
D. J.
Garton
,
T. K.
Minton
,
D.
Troya
,
R.
Pascual
, and
G. C.
Schatz
,
J. Phys. Chem. A
107
,
4583
(
2003
).
[50]
D.
Troya
,
G. C.
Schatz
,
D. J.
Garton
,
A. L.
Brunsvold
, and
T. K.
Minton
,
J. Chem. Phys.
120
,
731
(
2003
).
[51]
B.
Zhang
and
K.
Liu
,
J. Phys. Chem. A
109
,
6791
(
2005
).
[52]
F.
Wang
and
K.
Liu
,
Chem. Sci.
1
,
126
(
2010
).
[53]
J.
Zhang
and
K.
Liu
,
Chem. Asian J.
6
,
3132
(
2011
).
[54]
H.
Pan
and
K.
Liu
,
J. Chem. Phys.
140
,
191101
(
2014
).
[55]
D.
Troya
,
R. Z.
Pascual
, and
G. C.
Schatz
,
J. Phys. Chem. A
107
,
10497
(
2003
).
[56]
D.
Troya
and
E.
García-Molina
,
J. Phys. Chem. A
109
,
3015
(
2005
).
[57]
A. J. C.
Varandas
,
P. J. S. B.
Caridade
,
J. Z. H.
Zhang
,
Q.
Cui
, and
K. L.
Han
,
J. Chem. Phys.
125
,
064312
(
2006
).
[58]
G.
Czakó
and
J. M.
Bowman
,
Proc. Natl. Acad. Sci. USA
109
,
7997
(
2012
).
[59]
G.
Czakó
,
J. Phys. Chem. A
118
,
11683
(
2014
).
[60]
J.
Palma
and
D. C.
Clary
,
J. Chem. Phys.
112
,
1859
(
2000
).
[61]
J.
Palma
and
D. C.
Clary
,
Phys. Chem. Chem. Phys.
2
,
4105
(
2000
).
[62]
M. L.
Wang
,
Y. M.
Li
, and
J. Z. H.
Zhang
,
J. Phys. Chem. A
105
,
2530
(
2001
).
[63]
R.
Liu
,
M.
Yang
,
G.
Czako
,
J. M.
Bowman
,
J.
Li
, and
H.
Guo
,
J. Chem. Phys. Lett.
3
,
3776
(
2012
).
[64]
W.
Yan
,
F.
Meng
, and
D.
Wang
,
J. Phys. Chem. A
117
,
12236
(
2013
).
[65]
T.
Suzuki
and
E.
Hirota
,
J. Chem. Phys.
98
,
2387
(
1993
).
[66]
H.
Pan
,
J.
Yang
,
D.
Zhang
,
Q.
Shuai
,
D.
Dai
,
G.
Wu
,
B.
Jiang
, and
X.
Yang
,
J. Chem. Phys.
140
,
154305
(
2014
).
[67]
J.
Yang
,
K.
Shao
,
D.
Zhang
,
Q.
Shuai
,
B.
Fu
,
D. H.
Zhang
, and
X.
Yang
,
J. Phys. Chem. Lett.
5
,
3106
(
2014
).
[68]
R.
Ben Bouchrit
,
M.
Jorfi
,
D.
Ben Abdallah
,
N.
Jaidane
,
M.
González
,
B.
Bussery-Honvault
, and
P.
Honvault
,
J. Chem. Phys.
140
,
244315
(
2014
).
[69]
K.
Shao
,
B.
Fu
, and
D. H.
Zhang
,
Chin. J. Chem. Phys.
28
,
403
(
2015
).
[70]
M.
Yang
,
D. H.
Zhang
, and
S. Y.
Lee
,
J. Chem. Phys.
117
,
9539
(
2002
).
[71]
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
[72]
R. N.
Zare
,
Angular Momentum
,
New York
:
Wiley
, (
1988
).
[73]
R. T.
Pack
,
J. Chem. Phys.
60
,
633
(
1974
).
[74]
P.
McGuire
and
D. J.
Kouri
,
J. Chem. Phys.
60
,
2488
(
1974
).
[75]
J. M.
Bowman
,
J. Phys. Chem.
95
,
4960
(
1991
).
[76]
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
110
,
7622
(
1999
).
[77]
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
99
,
5615
(
1993
).
[78]
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
Chem. Phys. Lett.
89
,
483
(
1982
).
[79]
J.
Echave
and
D. C.
Clary
,
Chem. Phys. Lett.
190
,
225
(
1992
).
[80]
R. B.
Bernstein
,
D. R.
Herschbach
, and
R. D.
Levine
,
J. Phys. Chem.
91
,
5365
(
1987
).
[81]
R. D.
Levine
,
J. Phys. Chem.
94
,
8872
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.