Detailed understanding of the mechanism of the combustion relevant multichannel reactions of O(3P) with unsaturated hydrocarbons (UHs) requires the identification of all primary reaction products, the determination of their branching ratios and assessment of intersystem crossing (ISC) between triplet and singlet potential energy surfaces (PESs). This can be best achieved combining crossed-molecular-beam (CMB) experiments with universal, soft ionization, mass-spectrometric detection and time-of-fiight analysis to high-level ab initio electronic structure calculations of triplet/singlet PESs and RRKM/Master Equation computations of branching ratios (BRs) including ISC. This approach has been recently demonstrated to be successful for O(3P) reactions with the simplest UHs (alkynes, alkenes, dienes) containing two or three carbon atoms. Here, we extend the combined CMB/theoretical approach to the next member in the diene series containing four C atoms, namely 1,2-butadiene (methylallene) to explore how product distributions, branching ratios and ISC vary with increasing molecular complexity going from O(3P)+propadiene to O(3P)+1,2-butadiene. In particular, we focus on the most important, dominant molecular channels, those forming propene+CO (with branching ratio ∼0.5) and ethylidene+ketene (with branching ratio ∼0.15), that lead to chain termination, to be contrasted to radical forming channels (branching ratio ∼0.35) which lead to chain propagation in combustion systems.

[1]
W. C.
Gardiner
,
Gas-Phase Combustion Chemistry
,
New York
:
Springer
, (
2000
).
[2]
J. M.
Simmie
,
Prog. Energy Combust. Sci.
29
,
599
(
2003
).
[3]
K.
Kohse-Höinghaus
,
P.
Oßwald
,
T. A.
Cool
,
T.
Kasper
,
N.
Hansen
,
F.
Qi
,
C. K.
Westbrook
, and
P. R.
Westmoreland
,
Angew. Chem. Int. Ed.
49
,
3572
(
2010
).
[4]
H.
Schobert
,
Chemistry of Fossil Fuels and Biofuels
,
Cambridge
:
Cambridge University Press
, (
2013
).
[5]
C. W.
Zhou
,
Y.
Li
,
U.
Burke
,
C.
Banyon
,
K. P.
Somers
,
S.
Ding
,
S.
Khan
,
J. W.
Hargis
,
T.
Sikes
,
O.
Mathieu
,
E. L.
Petersen
,
M.
AlAbbad
,
A.
Farooq
,
Y.
Pan
,
Y.
Zhang
,
Z.
Huang
,
J.
Lopez
,
Z.
Loparo
,
S. S.
Vasu
, and
H. J.
Curran
,
Combust. Flame
197
,
423
(
2018
).
[6]
C. A.
Taatjes
,
D. L.
Osborn
,
T. M.
Selby
,
G.
Meloni
,
A. J.
Trevitt
,
E.
Epifanovsky
,
A. I.
Krylov
,
B.
Sirjean
,
E.
Dames
, and
H.
Wang
,
J. Phys. Chem. A
114
,
3355
(
2010
).
[7]
F.
Leonori
,
N.
Balucani
,
V.
Nevrly
,
A.
Bergeat
,
S.
Falcinelli
,
G.
Vanuzzo
,
P.
Casavecchia
, and
C.
Cavallotti
,
J. Phys. Chem. C
119
,
14632
(
2015
).
[8]
G.
Vanuzzo
,
N.
Balucani
,
F.
Leonori
,
D.
Stranges
,
V.
Nevrly
,
S.
Falcinelli
,
A.
Bergeat
,
P.
Casavecchia
, and
C.
Cavallotti
,
J. Phys. Chem. A
120
,
4603
(
2016
).
[9]
I.
Gimondi
,
C.
Cavallotti
,
G.
Vanuzzo
,
N.
Balucani
, and
P.
Casavecchia
,
J. Phys. Chem. A
120
,
4619
(
2016
).
[10]
P.
Casavecchia
,
F.
Leonori
, and
N.
Balucani
,
Int. Rev. Phys. Chem.
34
,
161
(
2015
).
[11]
H.
Pan
,
K.
Liu
,
A.
Caracciolo
, and
P.
Casavecchia
,
Chem. Soc. Rev.
46
,
7517
(
2017
).
[12]
F.
Leonori
,
N.
Balucani
,
G.
Capozza
,
E.
Segoloni
,
G. G.
Volpi
, and
P.
Casavecchia
,
Phys. Chem. Chem. Phys.
16
,
10008
(
2014
).
[13]
B.
Fu
,
Y. C.
Han
,
J. M.
Bowman
,
L.
Angelucci
,
N.
Balucani
,
F.
Leonori
, and
P.
Casavecchia
,
Proc. Nat. Acad. Sci.
109
,
9733
(
2012
).
[14]
B.
Fu
,
Y. C.
Han
,
J. M.
Bowman
,
F.
Leonori
,
N.
Balucani
,
L.
Angelucci
,
A.
Occhiogrosso
,
R.
Petrucci
, and
P.
Casavecchia
,
J. Chem. Phys.
137
,
22A532
(
2012
)
[15]
N.
Balucani
,
F.
Leonori
,
P.
Casavecchia
,
B.
Fu
, and
J. M.
Bowman
,
J. Phys. Chem. A
119
,
12498
(
2015
).
[16]
C.
Cavallotti
,
F.
Leonori
,
N.
Balucani
,
V.
Nevrly
,
A.
Bergeat
,
S.
Falcinelli
,
G.
Vanuzzo
, and
P.
Casavecchia
,
J. Phys. Chem. Lett.
5
,
4213
(
2014
).
[17]
F.
Leonori
,
A.
Occhiogrosso
,
N.
Balucani
,
A.
Bucci
,
R.
Petrucci
, and
P.
Casavecchia
,
J. Chem. Phy. Lett.
3
,
75
(
2012
).
[18]
A.
Caracciolo
,
G.
Vanuzzo
,
N.
Balucani
,
D.
Stranges
,
C.
Cavallotti
, and
P.
Casavecchia
,
Chem. Phys. Lett.
683
,
105
(
2017
).
[19]
M.
Schenk
,
L.
Leon
,
K.
Moshammer
,
P.
Oßwald
,
T.
Zeuch
,
L.
Seidel
,
F.
Mauss
, and
K.
Kohse-Höinghaus
,
Combust.
160
,
487
(
2013
).
[20]
P.
Zhao
,
W.
Yuan
,
H.
Sun
,
Y.
Li
,
A. P.
Kelley
,
X.
Zheng
, and
C. K.
Law
,
Proc. Comb. Inst.
5
,
309
(
2015
).
[21]
H. I.
Abdel-Shafy
and
M. S. M.
Mansour
,
Egyptian J. Petroleum
25
,
107
(
2016
).
[22]
S. D.
Chambreau
,
J.
Lemieux
,
L.
Wang
, and
J.
Zhang
,
J. Phys. Chem. A
109
,
2190
(
2005
).
[23]
A.
Hanf
,
H. R.
Volpp
,
P.
Sharma
,
J. P.
Mittal
, and
R. K.
Vatsa
,
J. Chem. Phys.
133
,
024308
(
2010
).
[24]
X. L.
Mu
,
I. C.
Lu
,
S. H.
Lee
,
X. Y.
Wang
, and
X.
Yang
,
J. Chem. Phys.
121
,
4684
(
2004
).
[25]
N.
Balucani
,
H. Y.
Lee
,
A. M.
Mebel
,
Y. T.
Lee
, and
R. I.
Kaiser
,
J. Chem. Phys.
115
,
5107
(
2001
).
[26]
(a)
X.
Gu
,
F.
Zhang
,
R. I.
Kaiser
,
V. V.
Kislov
, and
A. M.
Mebel
,
Chem. Phys. Lett.
474
,
51
(
2009
).
(b)
V. V.
Kislov
and
A. M.
Mebel
,
J. Phys. Chem. A
114
,
7682
(
2010
).
[PubMed]
[27]
T.
Nguyen
,
J.
Peeters
, and
L.
Vereecken
,
J. Phys. Chem. A
110
,
12166
(
2006
).
[28]
H.
Deslauriers
and
G. J.
Collin
,
Can. J. Chem.
64
,
1925
(
1986
).
[29]
NIST Chemistry WebBook
,
Gaithersburg, MD
:
National Institute of Standards and Technology
(
2002
).
[30]
N. R.
Daly
,
Rev. Sci. Instrum.
31
,
264
(
1960
).
[31]
P.
Casavecchia
,
F.
Leonori
,
N.
Balucani
,
R.
Petrucci
,
G.
Capozza
, and
E.
Segoloni
,
Phys. Chem. Chem. Phys.
11
,
46
(
2009
).
[32]
M.
Alagia
,
V.
Aquilanti
,
D.
Ascenzi
,
N.
Balucani
,
D.
Cappelletti
,
L.
Cartechini
,
P.
Casavecchia
,
F.
Pirani
,
G.
Sanchini
, and
G. G.
Volpi
,
Israel J. Chem.
37
,
329
(
1997
).
[33]
5.
P.
Casavecchia
,
K.
Liu
, and
X.
Yang
,
Tutorials in Molecular Reaction Dynamics
,
M.
Brouard
and
C.
Vallance
, Eds.,
Cambridge
:
Royal Society of Chemistry Publishing
, Ch. VI (
2010
).
[34]
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
W. T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
 Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16 Rev. B.01
,
Wallingford, CT
:
Gaussian Inc
. (
2016
).
[35]
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schtz
,
Molpro: a General-Purpose Quantum Chemistry Program Package
(
2012
).
[36]
C.
Cavallotti
,
M.
Pelucchi
.
Y.
Georgievskii
, and
S. J.
Klippenstein
.
J. Chem. Theory. Comput.
(
2019
) in press, DOI: .
[37]
G. A.
Fisk
,
J. D.
McDonald
, and
D. R.
Herschbach
,
General Discussion. Discuss. Faraday Soc.
44
,
228
(
1967
).
[38]
R. J.
Cvetanović
and
D. L.
Singleton
,
Rev. Chem. Int.
5
,
183
(
1984
).
[39]
R. J.
Cvetanović
and,
J. Phys. Chem. Ref. Data
16
,
261
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.