Collective behaviours of active particle systems have gained great research attentions in recent years. Here we present a mode-coupling theory (MCT) framework to study the glass transition of a mixture system of active and passive Brownian particles. The starting point is an effective Smoluchowski equation, which governs the dynamics of the probability distribution function in the position phase space. With the assumption of the existence of a nonequilibrium steady state, we are able to obtain dynamic equations for the intermediate scattering functions (ISFs), wherein an irreducible memory function is introduced which in turn can be written as functions of the ISFs based on standard mode-coupling approximations. The effect of particle activity is included through an effective diffusion coefficient which can be obtained via short time simulations. By calculating the long-time limit of the ISF, the Debye-Waller (DW) factor, one can determine the critical packing fraction ηc of glass transition. We find that for active-passive (AP) mixtures with the same particle sizes, ηc increases as the partial fraction of active particle xA increases, which is in agreement with previous simulation works. For system with different active/passive particle sizes, we find an interesting reentrance behaviour of glass transition, i.e., ηc shows a non-monotonic dependence on xA. In addition, such a reentrance behaviour would disappear if the particle activity is large enough. Our results thus provide a useful theoretical scheme to study glass transition behaviour of active-passive mixture systems in a promising way.

[1]
T.
Vicsek
and
A.
Zafeiris
,
Phys. Rep.
517
,
71
(
2012
).
[2]
M. C.
Marchetti
.
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M. D.
Rao
, and
R. A.
Simha
,
Rev. Mod. Phys.
85
,
1147
(
2013
).
[3]
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
,
Rev. Mod. Phys.
88
,
045006
(
2016
).
[4]
V.
Schaller
,
C.
Weber
,
C.
Semmrich
,
E.
Frey
, and
A. R.
Bausch
,
Nature
467
,
73
(
2010
).
[5]
Y.
Sumino
,
K. H.
Nagai
,
Y.
Shitaka
,
D.
Tanaka
,
K.
Yoshikawa
,
H.
Chat
, and
K.
Oiwa
,
Nature
483
,
48
(
2012
).
[6]
J.
Schwarz-Linek
,
C.
Valeriani
,
A.
Cacciuto
,
M. E.
Cates
,
D.
Marenduzzo
,
A. N.
Morozov
, and
W. C. K.
Poon
,
Proc. Nat. Acad. Sci. USA
109
,
4052
(
2012
).
[7]
Y.
Fily
and
M. C.
Marchetti
,
Phys. Rev. Lett.
108
,
235702
(
2012
).
[8]
I.
Buttinoni
,
J.
Bialk
,
F.
Kmmel
,
H.
Löwen
,
C.
Bechinger
, and
T.
Speck
,
Phys. Rev. Lett.
110
,
238301
(
2013
).
[9]
R.
Wittkowski
,
A.
Tiribocchi
,
J.
Stenhammar
,
R. J.
Allen
,
D.
Marenduzzo
, and
M. E.
Cates
,
Nat. Commun.
5
,
4351
(
2014
).
[10]
S. K.
Das
,
S. A.
Egorov
,
B.
Trefz
,
P.
Virnau
, and
K.
Binder
,
Phys. Rev. Lett.
112
,
198301
(
2014
).
[11]
R.
Ni
,
M. A. Cohen
Stuart
, and
M.
Dijkstra
,
Nat. Commun.
4
,
2704
(
2013
).
[12]
G.
Szamel
,
E.
Flenner
, and
L.
Berthier
,
Phys. Rev. E
91
,
062304
(
2015
).
[13]
E.
Flenner
,
G.
Szamel
, and
L.
Berthier
,
The Nonequilibrium Glassy Dynamics of Self-Propelled Particles
, arXiv preprint arXiv: 1606.00641 (
2016
).
[14]
Z.
Ma
,
Q. L
Lei
, and
R.
Ni
,
Mobility Induced Demixing in the Mixtures of Passive and Eccentric Active Brownian Particles
, arXiv preprint arXiv: 1706.00202 (
2017
).
[15]
M. E.
Cates
and
E.
Tjhung
,
J. Fluid Mech.
836
,
P1
(
2018
).
[16]
R.
Wittmann
,
J. M.
Brader
,
A.
Sharma
, and
U. M. B.
Marconi
,
Phys. Rev. E
97
,
012601
(
2018
).
[17]
S. N.
Weber
,
C. A.
Weber
, and
E.
Frey
,
Phys. Rev. Lett.
116
,
058301
(
2016
).
[18]
J.
Stenhammar
,
R.
Wittkowski
,
D.
Marenduzzo
, and
M. E.
Cates
,
Phys. Rev. Lett.
114
,
018301
(
2015
).
[19]
L.
Berthier
and
J.
Kurchan
,
Nat. Phys.
9
,
310
(
2013
).
[20]
S.
Mandal
,
S.
Lang
,
M.
Gross
,
M.
Oettel
,
D.
Raabe
,
T.
Franosch
, and
F.
Varnik
,
Nat. Commun.
5
,
4435
(
2014
).
[21]
L.
Berthier
,
Phys. Rev. Lett.
112
,
220602
(
2014
).
[22]
A.
Sharma
,
R.
Wittmann
, and
J. M.
Brader
,
Phys. Rev. E
95
,
012115
(
2017
).
[23]
V.
Krakoviack
,
Phys. Rev. Lett.
94
,
065703
(
2005
).
[24]
G. M.
Whitesides
and
B.
Grzybowski
,
Science
295
,
2418
(
2002
).
[25]
A.
Liluashvili
,
J.
Ónody
, and
T.
Voigtmann
,
Phys. Rev. E
96
,
062608
(
2017
).
[26]
M. K.
Feng
and
Z. H.
Hou
,
Soft Matter
13
,
4464
(
2017
).
[27]
R. F.
Fox
,
Phys. Rev. A
34
,
4525
(
1986
).
[28]
R. F.
Fox
,
Phys. Rev. A
33
,
467
(
1986
).
[29]
T. F. F.
Farage
,
P.
Krinninger
, and
J. M.
Brader
,
Phys. Rev. E
91
,
042310
(
2015
).
[30]
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
,
Amsterdam
:
Elsevier
, (
1990
).
[31]
T.
Voigtmann
,
Europhys. Lett.
96
,
36006
(
2011
).
[32]
X. L.
Wu
and
A.
Libchaber
,
Phys. Rev. Lett.
84
,
3017
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.