A new potential energy surface (PES) for the atmospheric formation of sulfuric acid from OH+SO2 is investigated using density functional theory and high-level ab initio molecular orbital theory. A pathway focused on the new PES assumes the reaction to take place between the radical complex SO3·HO2 and H2O. The unusual stability of SO3·HO2 is the principal basis of the new pathway, which has the same final outcome as the current reaction mechanism in the literature but it avoids the production and complete release of SO3. The entire reaction pathway is composed of three consecutive elementary steps: (1) HOSO2+O2→SO3·HO2, (2) SO3·HO2+H2O→SO3·H2O·HO2, (3) SO3·H2O·HO2→H2SO4+HO2. All three steps have small energy barriers, under 10 kcal/mol, and are exothermic, and the new pathway is therefore favorable both kinetically and thermodynamically. As a key step of the reactions, step (3), HO2 serves as a bridge molecule for low-barrier hydrogen transfer in the hydrolysis of SO3. Two significant atmospheric implications are expected from the present study. First, SO3 is not released from the oxidation of SO2 by OH radical in the atmosphere. Second, the conversion of SO2 into sulfuric acid is weakly dependent on the humidity of air.

[1]
B. J.
Finlayson-Pitts
and
J. N.
Pitts
 Jr.
,
Chemistry of the Upper and Lower Atmosphere
,
San Diego
:
Academic Press
, (
2000
).
[2]
K. P.
Wayne
,
Chemistry of Atmospheres
, 3rd Edn.,
Oxford
:
Oxford University Press
, (
2000
).
[3]
J. H
Seifeld
and
S. N.
Pandis
,
Atmospheric Chemistry and Physics
,
New York
:
Wiley
, (
1998
).
[4]
Acid Deposition, Atmospheric Process in Eastern North America National Research Council
,
Washington, DC
:
National Academy Press
, (
1983
).
[5]
J. G.
Calvert
,
A.
Lazrus
,
G. L.
Kok
,
B. G.
Heikes
,
J. G.
Walega
,
J.
Lind
, and
C. A.
Cantrell
,
Nature
317
,
27
(
1985
).
[6]
H.
Berrwsheim
,
P. H.
Wine
, and
D. D.
Davis
, in
Composition, Chemistry and Climate of the Atmosphere
,
H. B.
Singh
Ed.,
Washington, DC
:
Van Nostrand Reinhold
, (
1994
).
[7]
W. R.
Stockwell
and
J. G.
Calvert
,
Atmos. Environ.
17
,
2231
(
1983
).
[8]
S. W.
Benson
,
Chem. Rev.
78
,
23
(
1978
).
[9]
S.
Nagase
,
S.
Hashimoto
, and
H.
Akimoto
,
J. Phys. Chem.
92
,
641
(
1988
).
[10]
W. K.
Li
and
M. L.
McKee
,
J. Phys. Chem.
101
,
9778
(
1997
).
[11]
D.
Majumdar
,
G. S.
Kim
,
J.
Kim
,
K. S.
Oh
, and
J. Y.
Lee
,
J. Chem. Phys.
112
,
723
(
2000
).
[12]
W.
Klopper
,
D. P.
Tew
,
N.
Gonzalez-Garcia
, and
M.
Olzmann
,
J. Chem. Phys.
129
,
114308
(
2008
).
[13]
N.
Gonzalez-Garcia
,
W.
Klopper
, and
M.
Olzmann
,
Chem. Phys. Lett.
470
,
59
(
2009
).
[14]
K.
Morokuma
and
C.
Muguruma
,
J. Am. Chem. Soc.
116
,
10316
(
1994
).
[15]
L. J.
Larson
,
M.
Kuno
, and
F. M.
Tao
,
J. Chem. Phys.
112
,
8830
(
2000
).
[16]
C. E.
Kolb
,
J. T.
Jayne
,
D. R.
Worsnop
,
M. J.
Molina
,
R. J.
Meads
, and
A. A.
Viggiano
,
J. Am. Chem. Soc.
116
,
10314
(
1994
).
[17]
E. V.
Akhmatskaya
,
C. J.
Apps
,
I. H.
Hillier
,
A. J.
Masters
,
N. E.
Wat
, and
J. C.
Whitehead
,
Chem. Commun.
707
(
1997
).
[18]
E. T.
Aaltonen
and
J. S.
Francisco
,
J. Phys. Chem. A
107
,
1216
(
2003
).
[19]
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
[20]
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
[21]
G. A.
Petersson
,
A.
Bennett
,
T. G.
Tensfeldt
,
M. A.
Al-Laham
,
W. A.
Shirley
, and
J. A.
Mantzaris
,
J. Chem. Phys.
89
,
2193
(
1988
).
[22]
R. A.
Kendall
,
T. H.
Dunning
Jr., and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
[23]
C.
Moller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
[24]
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
[25]
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
94
,
4334
(
1991
).
[26]
K.
Raghavachari
,
G. W.
Truck
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
[27]
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
[28]
C.
Peng
and
H. B.
Schlegel
,
Israel J. Chem.
33
,
449
(
1993
).
[29]
C.
Peng
,
P. Y.
Ayala
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Comp. Chem.
17
,
49
(
1996
).
[30]
K.
Fukui
,
Acc. Chem. Res.
14
,
363
(
1981
).
[31]
H. P.
Hratchian
and
H. B.
Schlegel
, in
Theory and Applications of Computational Chemistry: The First 40 Years
,
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G.
Scuseria
Eds.,
Amsterdam
:
Elsevier
,
195
(
2005
).
[32]
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
Jr.,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
,
Gaussian 09, Revision B.01
,
Wallingford CT
:
Gaussian Inc.
, (
2009
).
This content is only available via PDF.
You do not currently have access to this content.