Adsorption and dehydrogenation of ethylene on Cu(410) surface are investigated with first-principles calculations and micro-kinetics analysis. Ethylene dehydrogenation is found to start from the most stable π-bonded state instead of the previously proposed di-σ-bonded state. Our vibrational frequencies calculations verify the π-bonded adsorption at step sites at low coverage and low surface temperature and di-σ-bonded ethylene on C−C dimer (C2H4-CC) is proposed to be the species contributing to the vibrational peaks experimentally observed at high coverage at 193 K. The presence of C2H4-CC indicates that the dehydrogenation of ethylene on Cu(410) can proceed at temperature as low as 193 K.
References
[1]
A. S.
Crampton
, M. D.
Rötzer
, F. F.
Schweinberger
, B.
Yoon
, U.
Landman
, and U.
Heiz
, J. Catal.
333
, 51
(2016
).[2]
G. T. K. K.
Gunasooriya
, E. G.
Seebauer
, and M.
Saeys
, ACS Catal.
7
, 1966
(2017
).[3]
K.
Shimamura
, Y.
Shibuta
, S.
Ohmura
, R.
Arifin
, and F.
Shimojo
, J. Phys.: Condens. Matter.
28
, 145001
(2016
).[4]
J.
Andersin
, N.
Lopez
, and K.
Honkala
, J. Phys. Chem. C
113
, 8278
(2009
).[5]
K.
Kousi
, N.
Chourdakis
, H.
Matralis
, D.
Kontarides
, C.
Papadopoulou
, and X.
Verykios
, Appl. Catal. A
518
, 129
(2016
).[6]
H. S.
Bengaard
, J. K.
Nørskov
, J.
Sehested
, B. S.
Clausen
, L. P.
Nielsen
, A. M.
Molenbroek
, and J. R.
Rostrup-Nielsen
, J. Catal.
209
, 365
(2002
).[7]
H.
Tetlow
, J. P.
de Boer
, I. J.
Ford
, D. D.
Vvedensky
, J.
Coraux
, and L.
Kantorovich
, Phys. Rep.
542
, 195
(2014
).[8]
P.
Wu
, W. H.
Zhang
, Z. Y.
Li
, and J. L.
Yang
, Small
10
, 2114
(2014
).[9]
Z. Y.
Qiu
, P.
Li
, Z. Y.
Li
, and J. L.
Yang
, Acc. Chem. Res.
51
, 728
(2018
).[10]
D.
Arvanitis
, L.
Wenzel
, and K.
Baberschke
, Phys. Rev. Lett.
59
, 2435
(1987
).[11]
H.
Öström
, A.
Föhlisch
, M.
Nyberg
, M.
Weinelt
, C.
Heske
, L. G. M.
Pettersson
, and A.
Nilsson
, Surf. Sci.
559
, 85
(2004
).[12]
R.
Linke
, C.
Becker
, T.
Pelster
, M.
Tanemura
, and K.
Wandelt
, Surf. Sci.
377
, 655
(1997
).[13]
D.
Yamazaki
, M.
Okada
, F. C.
Franco
Jr., and T.
Kasai
, Surf. Sci.
605
, 934
(2011
).[14]
T.
Kravchuk
, L.
Vattuone
, L.
Burkholder
, W. T.
Tysoe
, and M.
Rocca
, J. Am. Chem. Soc.
130
, 12552
(2008
).[15]
T.
Kravchuk
, V.
Venugopal
, L.
Vattuone
, L.
Burkholder
, W. T.
Tysoe
, M.
Smerieri
, and M.
Rocca
, J. Phys. Chem. C
113
, 20881
(2009
).[16]
V.
Venugopal
, L.
Vattuone
, T.
Kravchuk
, M.
Smerieri
, L.
Savio
, J.
Jupille
, and M.
Rocca
, J. Phys. Chem. C
113
, 20875
(2009
).[17]
T.
Makino
, M.
Okada
, and A.
Kokalj
, J. Phys. Chem. C
118
, 27436
(2014
).[18]
G.
Kresse
and J.
Furthmller
, Phys. Rev. B
54
, 11169
(1996
).[19]
H.
Jónsson
, G.
Mills
, and K. W.
Jacobsen
, Classical and Quantum Dynamics in Condensed Phase Simulations
, B. J.
Berne
, G.
Ciccotti
, and D. F.
Coker
Eds., Singapore River Edge, NJ
: World Scientific
, 385
(1998
).[20]
J. H.
Choi
, Z. C.
Li
, P.
Cui
, X. D.
Fan
, H.
Zhang
, C. G.
Zeng
, and Z. Y.
Zhang
, Sci. Rep.
3
, 1925
(2013
).[21]
J.
Kliměs
, D. R.
Bowler
, and A.
Michaelides
, Phys. Rev. B
83
, 195131
(2011
).[22]
F.
Hanke
, M. S.
Dyer
, J.
Björk
, and M.
Persson
, J. Phys.: Condens. Matter.
24
, 424217
(2012
).
This content is only available via PDF.
© 2018 Chinese Physical Society.
2018
Chinese Physical Society
You do not currently have access to this content.