Tryptophan derivatives have long been used as site-specific biological probes. 4-Cyanotryptophan emits in the visible region and is the smallest blue fluorescent amino acid probe for biological applications. Other indole or tryptophan analogs may emit at even longer wavelengths than 4-cyanotryptophan. We performed FTIR, UV-Vis, and steady-state and time-resolved fluorescence spectroscopy on six ester-derivatized indoles in different solvents. Methyl indole-4-carboxylate emits at 450 nm with a long fluorescence lifetime, and is a promising candidate for a fluorescent probe. The ester-derivatized indoles could be used as spectroscopic probes to study local protein environments. Our measurements provide a guide for choosing ester-derivatized indoles to use in practice and data for computational modeling of the effect of substitution on the electronic transitions of indole.

[1]
J.
Ma
,
I. M.
Pazos
,
W.
Zhang
,
R. M.
Culik
, and
F.
Gai
,
Annu. Rev. Phys. Chem.
66
,
357
(
2015
).
[2]
H.
Kim
and
M.
Cho
,
Chem. Rev.
113
,
5817
(
2013
).
[3]
E. A.
Specht
,
E.
Braselmann
, and
A. E.
Palmer
,
Annu. Rev. Physiol.
79
,
93
(
2017
).
[4]
R.
Adhikary
,
J.
Zimmermann
, and
F. E.
Romesberg
,
Chem. Rev.
117
,
1927
(
2017
).
[5]
A. A.
Bogan
and
K. S.
Thorn
,
J. Mol. Biol.
280
,
1
(
1998
).
[6]
C. H.
Hsu
,
C. P.
Chen
,
M. L.
Jou
,
A. Y. L.
Lee
,
Y. C.
Lin
,
Y. P.
Yu
,
W. T.
Huang
, and
S. H.
Wu
,
Nucleic Acids Res.
33
,
4053
(
2005
).
[7]
G. J.
Bartlett
,
C. T.
Porter
,
N.
Borkakoti
, and
J. M.
Thornton
,
J. Mol. Biol.
324
,
105
(
2002
).
[8]
Y.
Xue
,
A. V.
Davis
,
G.
Balakrishnan
,
J. P.
Stasser
,
B. M.
Staehlin
,
P.
Focia
,
T. G.
Spiro
,
J. E.
Penner-Hahn
, and
T. V.
O’Halloran
,
Nat. Chem. Biol.
4
,
107
(
2008
).
[9]
C. A.
Royer
,
Chem. Rev.
106
,
1769
(
2006
).
[10]
S.
Lepthien
,
M. G.
Hoesl
,
L.
Merkel
, and
N.
Budisa
,
Proc. Natl. Acad. Sci. USA
105
,
16095
(
2008
).
[11]
P.
Talukder
,
S.
Chen
,
C. T.
Liu
,
E. A.
Baldwin
,
S. J.
Benkovic
, and
S. M.
Hecht
,
Bioorg. Med. Chem.
22
,
5924
(
2014
).
[12]
A. V.
Smirnov
,
D. S.
English
,
R. L.
Rich
,
J.
Lane
,
L.
Teyton
,
A. W.
Schwabacher
,
S.
Luo
,
R. W.
Thornburg
, and
J. W.
Petrich
,
J. Phys. Chem. B
101
,
2758
(
1997
).
[13]
P.
Talukder
,
S.
Chen
,
B.
Roy
,
P.
Yakovchuk
,
M. M.
Spiering
,
M. P.
Alam
,
M. M.
Madathil
,
C.
Bhattacharya
,
S. J.
Benkovic
, and
S. M.
Hecht
,
Biochemistry
54
,
7457
(
2015
).
[14]
B. N.
Markiewicz
,
D.
Mukherjee
,
T.
Troxler
, and
F.
Gai
,
J. Phys. Chem. B
120
,
936
(
2016
).
[15]
M. R.
Hilaire
,
I. A.
Ahmed
,
C. W.
Lin
,
H.
Jo
,
W. F.
DeGrado
, and
F.
Gai
,
Proc. Natl. Acad. Sci. USA
114
,
6005
(
2017
).
[16]
M. R.
Hilaire
,
D.
Mukherjee
,
T.
Troxler
, and
F.
Gai
,
Chem. Phys. Lett.
685
,
133
(
2017
).
[17]
W.
Zhang
,
B. N.
Markiewicz
,
R. S.
Doerksen
,
A. B.
Smith
 III
, and
F.
Gai
,
Phys. Chem. Chem. Phys.
18
,
7027
(
2016
).
[18]
J. M.
Rodgers
,
R. M.
Abaskharon
,
B.
Ding
,
J.
Chen
,
W.
Zhang
, and
F.
Gai
,
Phys. Chem. Chem. Phys.
19
,
16144
(
2017
).
[19]
B. N.
Markiewicz
,
T.
Lemmin
,
W.
Zhang
,
I. A.
Ahmed
,
H.
Jo
,
G.
Fiorin
,
T.
Troxler
,
W. F.
DeGrado
, and
F.
Gai
,
Phys. Chem. Chem. Phys.
18
,
28939
(
2016
).
[20]
K. L.
Koziol
,
P. J.
Johnson
,
B.
Stucki-Buchli
,
S. A.
Waldauer
, and
P.
Hamm
,
Curr. Opin. Struct. Biol.
34
,
1
(
2015
).
[21]
W. K.
Zhang
,
Chin. J. Chem. Phys.
29
,
1
(
2016
).
[22]
M.
You
,
L.
Liu
, and
W.
Zhang
,
Phys. Chem. Chem. Phys.
19
,
19420
(
2017
).
[23]
M.
Maj
,
C.
Ahn
,
D.
Kossowska
,
K.
Park
,
K.
Kwak
,
H.
Han
, and
M.
Cho
,
Phys. Chem. Chem. Phys.
17
,
11770
(
2015
).
[24]
G.
Lee
,
D.
Kossowska
,
J.
Lim
,
S.
Kim
,
H.
Han
,
K.
Kwak
, and
M.
Cho
,
J. Phys. Chem. B
122
,
4035
(
2018
).
[25]
S.
Dutta
,
Y. L.
Li
,
W.
Rock
,
J. C.
Houtman
,
A.
Kohen
, and
C. M.
Cheatum
,
J. Phys. Chem. B
116
,
542
(
2012
).
[26]
I. M.
Pazos
,
A.
Ghosh
,
M. J.
Tucker
, and
F.
Gai
,
Angew Chem. Int. Ed. Engl.
53
,
6080
(
2014
).
[27]
M. J.
Kamlet
,
C.
Dickinson
, and
R. W.
Taft
,
Chem. Phys. Lett.
77
,
69
(
1981
).
[28]
M. J.
Kamlet
,
J. L. M.
Abboud
,
M. H.
Abraham
, and
R. W.
Taft
,
J. Org. Chem.
48
,
2877
(
1983
).
[29]
L.
Chuntonov
,
I. M.
Pazos
,
J.
Ma
, and
F.
Gai
,
J. Phys. Chem. B
119
,
4512
(
2015
).
[30]
J.
Braun
,
H. J.
Neusser
, and
P.
Hobza
,
J. Phys. Chem. A
107
,
3918
(
2003
).
[31]
Y.
Geng
,
T.
Takatani
,
E. G.
Hohenstein
, and
C. D.
Sherrill
,
J. Phys. Chem. A
114
,
3576
(
2010
).
[32]
T. V.
Sravanthi
and
S. L.
Manju
,
Eur. J. Pharm. Sci.
91
,
1
(
2016
).
[33]
V.
Sharma
,
P.
Kumar
, and
D.
Pathak
,
J. Heterocycl. Chem.
47
,
491
(
2010
).
[34]
X.
Meng
,
T.
Harricharran
, and
L. J.
Juszczak
,
Photochem. Photobiol.
89
,
40
(
2013
).
[35]
E. P.
Kirby
and
R. F.
Steiner
,
J. Phys. Chem.
74
,
4480
(
1970
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.