In this letter, we report a quantitative analysis of how a Pt(II) precursor is reduced to atoms at different temperatures for the formation of Pt nanocrystals with different morphologies and sizes. Our results suggest that in the early stage of a synthesis, the Pt(II) precursor is reduced to atoms exclusively in the solution phase, followed by homogeneous nucleation to generate nuclei and then seeds. At a relatively low reaction temperature such as 22°C, the growth of the seeds is dominated by autocatalytic surface reduction that involves the adsorption and then reduction of the Pt(II) precursor on the surface of the just-formed seeds. This particular growth pathway results in relatively large assemblies of Pt nanocrystals. When the reaction temperature is increased to 100°C, the dominant reduction pathway will be switched from surface to solution phase, producing much smaller assemblies of Pt nanocrystals. Our results also demonstrate that a similar trend applies to the seed-mediated growth of Pt nanocrystals in the presence of Pd nanocubes.

[1]
Y.
Xia
,
Y.
Xiong
,
B.
Lim
, and
S. E.
Skrabalak
,
Angew. Chem. Int. Ed.
48
,
60
(
2009
).
[2]
Y.
Xia
,
X.
Xia
, and
H. C.
Peng
,
J. Am. Chem. Soc.
137
,
7947
(
2015
).
[3]
Y.
Xia
,
K. D.
Gilroy
,
H. C.
Peng
, and
X.
Xia
,
Angew. Chem. Int. Ed.
56
,
60
(
2017
).
[4]
L.
Zhang
,
L. T.
Roling
,
X.
Wang
,
M.
Vara
,
M.
Chi
,
J.
Liu
,
S. I.
Choi
,
J.
Park
,
J. A.
Herron
,
Z.
Xie
,
M.
Mavrikakis
, and
Y.
Xia
,
Science
349
,
412
(
2015
).
[5]
X.
Wang
,
S. I.
Choi
,
L. T.
Roling
,
M.
Luo
,
C.
Ma
,
L.
Zhang
,
M.
Chi
,
J.
Liu
,
Z.
Xie
,
J. A.
Herron
,
M.
Mavrikakis
, and
Y.
Xia
,
Nat. Commun.
6
,
7594
(
2015
).
[6]
C. K.
Tsung
,
J. N.
Kuhn
,
W.
Huang
,
C.
Aliaga
,
L. I.
Hung
,
G. A.
Somorjai
, and
P.
Yang
,
J. Am. Chem. Soc.
131
,
5816
(
2009
).
[7]
W.
Chen
,
J.
Ji
,
X.
Feng
,
X.
Duan
,
G.
Qian
,
P.
Li
,
X.
Zhou
,
D.
Chen
, and
W.
Yuan
,
J. Am. Chem. Soc.
136
,
16736
(
2014
).
[8]
J.
Chen
,
B.
Lim
,
E. P.
Lee
, and
Y.
Xia
,
Nano Today
4
,
81
(
2009
).
[9]
Z.
Peng
and
H.
Yang
,
Nano Today
4
,
143
(
2009
).
[10]
X.
Wang
,
L.
Figueroa-Cosme
,
X.
Yang
,
M.
Luo
,
J.
Liu
,
Z.
Xie
, and
Y.
Xia
,
Nano Lett.
16
,
1467
(
2016
).
[11]
T. H.
Yang
,
K. D.
Gilroy
, and
Y.
Xia
,
Chem. Sci.
8
,
6730
(
2017
).
[12]
T. H.
Yang
,
H. C.
Peng
,
S.
Zhou
,
C. T.
Lee
,
S.
Bao
,
Y. H.
Lee
,
J. M.
Wu
, and
Y.
Xia
,
Nano Lett.
17
,
334
(
2017
).
[13]
T. H.
Yang
,
S.
Zhou
,
K. D.
Gilroy
,
L.
Figueroa-Cosme
,
Y. H.
Lee
,
J. M.
Wu
, and
Y.
Xia
,
Proc. Natl. Acad. Sci. USA
114
,
13619
(
2017
).
[14]
M. A.
Watzky
and
R. G.
Finke
,
J. Am. Chem. Soc.
119
,
10382
(
1997
).
[15]
C.
Besson
,
E. E.
Finney
, and
R. G.
Finke
,
Chem. Mater.
17
,
4925
(
2005
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.