The H+ +CO2 reaction at high energies is relevant in atmospheric chemistry, astrophysics, and proton cancer therapy research. Therefore, we present herein a complete investigation of H+ +CO2 at ELab=30 eV with the simplest-level electron nuclear dynamics (SLEND) method. SLEND describes nuclei via classical mechanics and electrons with a single-determinantal Thouless wavefunction. The 3402 SLEND conducted simulations from 42 independent CO2 target orientations provide a full description of all the reactive processes and their mechanisms in this system: non-charge-transfer scattering (NCTS), charge-transfer scattering (CTS), and single C=O bond dissociation; all this valuable information about reactivity is not accessible experimentally. Numerous details of the projectile scattering patterns are provided, including the appearance and coalescence of primary and secondary rainbow angles as a function of the target orientation. SLEND NCTS and CTS differential cross sections (DCSs) are evaluated in conjunction with advanced semi-classical techniques. SLEND NCTS DCS agrees well with its experimental counterpart at all the measured scattering angles, whereas SLEND CTS DCS agrees well at high scattering angles but less satisfactorily at lower ones. Remarkably, both NCTS and CTS SLEND DCSs predict the primary rainbow angle signatures in agreement with the experiment.

[1]
A. V.
Solov’yov
,
E.
Surdutovich
,
E.
Scifoni
,
I.
Mishustin
, and
W.
Greiner
,
Phys. Rev. E
79
,
011909
(
2009
).
[2]
E.
Surdutovich
and
A. V.
Solov’yov
,
Eur. Phys. J. D
68
,
353
(
2014
).
[3]
W. P.
Levin
,
H.
Kooy
,
J. S.
Loeffler
, and
T. F.
DeLaney
,
Br. J. Cancer
93
,
849
(
2005
).
[4]
C.
Stopera
,
T. V.
Grimes
,
P. M.
McLaurin
,
A.
Privett
, and
J. A.
Morales
,
Adv. Quantum Chem.
66
,
113
(
2013
).
[5]
G.
Niedner
,
M.
Noll
,
J. P.
Toennies
, and
C.
Schlier
,
J. Chem. Phys.
87
,
2685
(
1987
).
[6]
U.
Hege
and
F.
Linder
,
Z. Phys. A
320
,
95
(
1985
).
[7]
H.
Udseth
,
C. F.
Giese
, and
W. R.
Gentry
,
J. Chem. Phys.
60
,
3051
(
1974
).
[8]
F. A.
Gianturco
,
U.
Gierz
, and
J. P.
Toennies
,
J. Phys. B
14
,
667
(
1981
).
[9]
J.
Krutein
and
F.
Linder
,
J. Chem. Phys.
71
,
599
(
1979
).
[10]
M.
Noll
and
J. P.
Toennies
,
J. Chem. Phys.
85
,
3313
(
1986
).
[11]
B.
Friedrich
,
F. A.
Gianturco
,
G.
Niedner
,
M.
Noll
, and
J. P.
Toennies
,
J. Phys. B
20
,
3725
(
1987
).
[12]
B.
Friedrich
,
G.
Niedner
,
M.
Noll
, and
J. P.
Toennies
,
J. Chem. Phys.
87
,
5256
(
1987
).
[13]
G.
Niedner
,
M.
Noll
, and
J. P.
Toennies
,
J. Chem. Phys.
87
,
2067
(
1987
).
[14]
Y. N.
Chiu
,
B.
Friedrich
,
W.
Maring
,
G.
Niedner
,
M.
Noll
, and
J. P.
Toennies
,
J. Chem. Phys.
88
,
6814
(
1988
).
[15]
N.
Aristov
,
G.
Niedner-Schatteburg
,
J. P.
Toennies
, and
Y. N.
Chiu
,
J. Chem. Phys.
95
,
7969
(
1991
).
[16]
U.
Gierz
,
M.
Noll
, and
J. P.
Toennies
,
J. Chem. Phys.
83
,
2259
(
1985
).
[17]
M.
Baer
,
G.
Niedner-Schatteburg
, and
J. P.
Toennies
,
J. Chem. Phys.
91
,
4169
(
1989
).
[18]
F. A.
Gianturco
,
S.
Kumar
,
T.
Ritschel
,
R.
Vetter
, and
L.
Zlicke
,
J. Chem. Phys.
107
,
6634
(
1997
).
[19]
T. J. D.
Kumar
and
S.
Kumar
,
J. Chem. Phys.
121
,
191
(
2004
).
[20]
S.
Amaran
and
S.
Kumar
,
J. Chem. Phys.
128
,
124306
(
2008
).
[21]
A. J.
Privett
,
E. S.
Teixeira
,
C.
Stopera
, and
J. A.
Morales
,
PLoS One
12
,
e0174456
(
2017
).
[22]
P. M.
McLaurin
,
A. J.
Privett
,
C.
Stopera
,
T. V.
Grimes
,
A.
Perera
, and
J. A.
Morales
,
Mol. Phys.
113
,
297
(
2015
).
[23]
M.
Murakami
,
T.
Kirchner
,
M.
Horbatsch
, and
H. J.
Ldde
,
Phys. Rev. A
85
,
052704
(
2012
).
[24]
C.
Champion
,
M. A.
Quinto
,
J. M.
Monti
,
M. E.
Galassi
,
P. F.
Weck
,
O. A.
Fojón
,
J.
Hanssen
, and
R. D.
Rivarola
,
Phys. Med. Biol.
60
,
7805
(
2015
).
[25]
A. J.
Privett
and
J. A.
Morales
,
Chem. Phys. Lett.
603
,
82
(
2014
).
[26]
C.
Champion
,
P. F.
Weck
,
H.
Lekadir
,
M. E.
Galassi
,
O. A.
Fojn
,
P.
Abufager
,
R. D.
Rivarola
, and
J.
Hanssen
,
Phys. Med. Biol.
57
,
3039
(
2012
).
[27]
H.
Lekadir
,
I.
Abbas
,
C.
Champion
, and
J.
Hanssen
,
Nucl. Instrum. Methods Phys. Res. Sect. B
267
,
1011
(
2009
).
[28]
J. A.
Morales
,
A. C.
Diz
,
E.
Deumens
, and
Y.
Öhrn
,
Chem. Phys. Lett.
233
,
392
(
1995
).
[29]
J.
Morales
,
A.
Diz
,
E.
Deumens
, and
Y.
Öhrn
,
J. Chem. Phys.
103
,
9968
(
1995
).
[30]
J. A.
Morales
,
B.
Maiti
,
Y. A.
Yan
,
K.
Tsereteli
,
J.
Laraque
,
S.
Addepalli
, and
C.
Myers
,
Chem. Phys. Lett.
414
,
405
(
2005
).
[31]
B.
Maiti
,
R.
Sadeghi
,
A.
Austin
, and
J. A.
Morales
,
Chem. Phys.
340
,
105
(
2007
).
[32]
B.
Maiti
,
P. M.
McLaurin
,
R.
Sadeghi
,
S. Ajith
Perera
, and
J. A.
Morales
,
Int. J. Quantum Chem.
109
,
3026
(
2009
).
[33]
C.
Stopera
,
B.
Maiti
,
T. V.
Grimes
,
P. M.
McLaurin
, and
J. A.
Morales
,
J. Chem. Phys.
134
,
224308
(
2011
).
[34]
C.
Stopera
,
B.
Maiti
,
T. V.
Grimes
,
P. M.
McLaurin
, and
J. A.
Morales
,
J. Chem. Phys.
136
,
054304
(
2012
).
[35]
C.
Stopera
,
B.
Maiti
, and
J. A.
Morales
,
Chem. Phys. Lett.
551
,
42
(
2012
).
[36]
T. P.
Tsien
,
G. A.
Parker
, and
R. T.
Pack
,
J. Chem. Phys.
59
,
5373
(
1973
).
[37]
F. A.
Gianturco
,
U. T.
Lamanna
, and
M.
Attimonelli
,
Chem. Phys.
48
,
399
(
1980
).
[38]
S. V. K.
Kumar
,
V. S.
Ashoka
, and
E.
Krishnakumar
,
Phys. Rev. A
70
,
052715
(
2004
).
[39]
E.
Deumens
,
A.
Diz
,
R.
Longo
, and
Y.
Öhrn
,
Rev. Mod. Phys.
66
,
917
(
1994
).
[40]
E.
Deumens
and
Y.
Öhrn
,
J. Phys. Chem. A
105
,
2660
(
2001
).
[41]
K.
Tsereteli
,
Y. A.
Yan
, and
J. A.
Morales
,
Chem. Phys. Lett.
420
,
54
(
2006
).
[42]
S. A.
Perera
,
P. M.
McLaurin
,
T. V.
Grimes
, and
J. A.
Morales
,
Chem. Phys. Lett.
496
,
188
(
2010
).
[43]
F.
Hagelberg
,
Electron Dynamics in Molecular Interactions: Principles and Applications
,
Singapore
:
World Scientific
, (
2014
).
[44]
D. J.
Thouless
,
Nucl. Phys.
21
,
225
(
1960
).
[45]
R.
Longo
,
E.
Deumens
, and
Y.
Öhrn
,
J. Chem. Phys.
99
,
4554
(
1993
).
[46]
D.
Jacquemin
,
J. A.
Morales
,
E.
Deumens
, and
Y.
Öhrn
,
J. Chem. Phys.
107
,
6146
(
1997
).
[47]
M.
Hedström
,
J. A.
Morales
,
E.
Deumens
, and
Y.
Öhrn
,
Chem. Phys. Lett.
279
,
241
(
1997
).
[48]
S. A.
Malinovskaya
,
R.
Cabrera-Trujillo
,
J. R.
Sabin
,
E.
Deumens
, and
Y.
Öhrn
,
J. Chem. Phys.
117
,
1103
(
2002
).
[49]
O.
Quinet
,
E.
Deumens
, and
Y.
Öhrn
,
Int. J. Quantum Chem.
109
,
259
(
2009
).
[50]
F.
Hagelberg
and
E.
Deumens
,
Phys. Rev. A
65
,
052505
(
2002
).
[51]
P.
Kramer
and
M.
Saraceno
,
Geometry of the Time-Dependent Variational Principle in Quantum Mechanics
,
Berlin
:
Springler-Verlag
, (
1981
).
[52]
P. M.
McLaurin
, PhD Dissertation,
Texas
:
Texas Tech University
, (
2011
).
[53]
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
,
New York
:
Oxford University Press
, (
1989
).
[54]
X. S.
Li
,
J. C.
Tully
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Chem. Phys.
123
,
084106
(
2005
).
[55]
R. E.
Wyatt
,
Quantum Dynamics with Trajectories
,
New York
:
Springer Velag
, (
2005
).
[56]
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
,
New York
:
Dover Publications, Inc.
, (
1989
).
[57]
M. S.
Child
,
Molecular Collision Theory
,
Mineola
:
Dover Publications, Inc.
, (
1984
).
[58]
J. A.
Morales
,
Mol. Phys.
108
,
3199
(
2010
).
[59]
J. N. L.
Connor
and
D.
Farrelly
,
J. Chem. Phys.
75
,
2831
(
1981
).
[60]
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables
,
New York
:
Dover Publications, Inc.
, (
1972
).
[61]
C. F.
Giese
and
W. R.
Gentry
,
Phys. Rev. A
10
,
2156
(
1974
).
This content is only available via PDF.
You do not currently have access to this content.