The directional production of benzene is achieved by the current-enhanced catalytic conversion of lignin. The synergistic effect between catalyst and current promotes the depolymerization of lignin and the selective recombinant of the functional groups in the aromatic monomers. A high benzene yield of 175 gbenzene/kglignin was obtained with an excellent selectivity of 92.9 C-mol%. The process potentially provides a promising route for the production of basic petrochemical materials or high value-added chemicals using renewable biomass.

[1]
J.
Zakzeski
,
P. C. A.
Bruijnincx
,
A. L.
Jongerius
, and
B. M.
Weckhuysen
,
Chem. Rev.
110
,
3552
(
2010
).
[2]
G. W.
Huber
and
A.
Corma
,
Angew. Chem. Int. Ed.
46
,
7184
(
2007
).
[3]
M.
Kleinert
,
J. R.
Gasson
, and
T.
Barth
,
J. Anal. Appl. Pyrolysis
85
,
108
(
2009
).
[4]
H.
Deng
,
L.
Lin
, and
S.
Liu
,
Energy Fuels
24
,
4797
(
2010
).
[5]
Q.
Yao
,
Z.
Tang
,
J.
Guo
,
Y.
Zhang
, and
Q.
Guo
,
Chin. J. Chem. Phys.
28
,
209
(
2015
).
[6]
S.
Wang
,
H.
Lin
,
B.
Ru
,
W.
Sun
,
Y.
Wang
, and
Z.
Luo
,
J. Anal. Appl. Pyrolysis
108
,
78
(
2014
).
[7]
P.
Bi
,
J.
Wang
,
Y.
Zhang
,
P.
Jiang
,
X.
Wu
,
J.
Liu
,
H.
Xue
,
T.
Wang
, and
Q.
Li
,
Bioresour. Technol.
183
,
10
(
2015
).
[8]
F.
Bouxin
,
S.
Baumberger
,
J. H.
Renault
, and
P.
Dole
,
Bioresour. Technol.
102
,
5567
(
2011
).
[9]
J.
Zakzeski
and
B. M.
Weckhuysen
,
ChemSusChem
4
,
369
(
2011
).
[10]
Q.
Wu
,
L.
Ma
,
J.
Long
,
R.
Shu
,
Q.
Zhang
,
T.
Wang
, and
Y.
Xu
,
Chin. J. Chem. Phys.
29
,
474
(
2016
).
[11]
W.
Xu
,
S. J.
Miller
,
P. K.
Agrawal
, and
C. W.
Jones
,
ChemSusChem
5
,
667
(
2012
).
[12]
N.
Yan
,
C.
Zhao
,
P. J.
Dyson
,
C.
Wang
,
L. T.
Liu
, and
Y.
Kou
,
ChemSusChem
1
,
626
(
2008
).
[13]
J.
Dai
,
A. F.
Patti
, and
K.
Saito
,
Tetrahedron Lett.
57
,
4945
(
2016
).
[14]
C.
Diaz-Urrutia
,
B. B.
Hurisso
, and
P. M. P.
Gauthier
,
J. Mol. Catal. A
423
,
414
(
2016
).
[15]
K.
Stark
,
N.
Taccardi
,
A.
Bosmann
, and
P.
Wasserscheid
,
ChemSusChem
3
,
719
(
2010
).
[16]
D. J.
Nowakowski
,
A. V.
Bridgwater
,
D. C.
Elliott
,
D.
Meier
, and
P.
Wild
,
J. Anal. Appl. Pyrolysis
88
,
53
(
2010
).
[17]
D. K.
Shen
,
S.
Gu
,
K. H.
Luo
,
S. R.
Wang
, and
M. X.
Fang
,
Bioresour. Technol.
101
,
6136
(
2010
).
[18]
G.
Jiang
,
D. J.
Nowakowski
, and
A. V.
Bridgwater
,
Energy Fuels
24
,
4470
(
2010
).
[19]
Y.
Zhao
,
L.
Deng
,
B.
Liao
,
Y.
Fu
, and
Q. X.
Guo
,
Energy Fuels
24
,
5735
(
2010
).
[20]
C. A.
Mullen
, and
A. A.
Boateng
,
Fuel Process. Technol.
91
,
1446
(
2010
).
[21]
J.
Zakzeski
and
B. M.
Weckhuysen
,
ChemSusChem
4
,
369
(
2011
).
[22]
M.
Fan
,
S.
Deng
,
T.
Wang
, and
Q.
Li
,
Chin. J. Chem. Phys.
27
,
221
(
2014
).
[23]
J.
Zhu
,
J.
Wang
, and
Q.
Li
,
Chin. J. Chem. Phys.
26
,
477
(
2013
).
[24]
Y.
Zhang
,
P.
Bi
,
J.
Wang
,
P.
Jiang
,
X.
Wu
,
H.
Xue
,
J.
Liu
,
X.
Zhou
, and
Q.
Li
,
Appl. Energy
150
,
128
(
2015
).
[25]
J.
Wang
,
P.
Bi
,
Y.
Zhang
,
H.
Xue
,
P.
Jiang
,
X.
Wu
,
J.
Liu
,
T.
Wang
, and
Q.
Li
,
Energy
86
,
488
(
2015
).
[26]
M.
Fan
,
P.
Jiang
,
P.
Bi
,
S.
Deng
,
L.
Yan
,
Q.
Zhai
,
T.
Wang
, and
Q.
Li
,
Bioresour. Technol.
143
,
59
(
2013
).
[27]
A. G.
Gayubo
,
A.
Alonso
,
B.
Valle
,
A. T.
Aguayo
,
M.
Olazar
, and
J.
Bilbao
,
Fuel
89
,
3365
(
2010
).
[28]
P.
Bi
,
Y.
Yuan
,
M.
Fan
,
P.
Jiang
,
Q.
Zhai
, and
Q.
Li
,
Bioresour. Technol.
136
,
222
(
2013
).
[29]
L.
Yuan
,
T.
Ye
,
F.
Gong
,
Q.
Guo
,
Y.
Torimoto
,
M.
Yamamoto
, and
Q.
Li
,
Energy Fuels
23
,
3103
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.