The directional production of benzene is achieved by the current-enhanced catalytic conversion of lignin. The synergistic effect between catalyst and current promotes the depolymerization of lignin and the selective recombinant of the functional groups in the aromatic monomers. A high benzene yield of 175 gbenzene/kglignin was obtained with an excellent selectivity of 92.9 C-mol%. The process potentially provides a promising route for the production of basic petrochemical materials or high value-added chemicals using renewable biomass.
References
[1]
J.
Zakzeski
, P. C. A.
Bruijnincx
, A. L.
Jongerius
, and B. M.
Weckhuysen
, Chem. Rev.
110
, 3552
(2010
).[2]
G. W.
Huber
and A.
Corma
, Angew. Chem. Int. Ed.
46
, 7184
(2007
).[3]
M.
Kleinert
, J. R.
Gasson
, and T.
Barth
, J. Anal. Appl. Pyrolysis
85
, 108
(2009
).[4]
H.
Deng
, L.
Lin
, and S.
Liu
, Energy Fuels
24
, 4797
(2010
).[5]
Q.
Yao
, Z.
Tang
, J.
Guo
, Y.
Zhang
, and Q.
Guo
, Chin. J. Chem. Phys.
28
, 209
(2015
).[6]
S.
Wang
, H.
Lin
, B.
Ru
, W.
Sun
, Y.
Wang
, and Z.
Luo
, J. Anal. Appl. Pyrolysis
108
, 78
(2014
).[7]
P.
Bi
, J.
Wang
, Y.
Zhang
, P.
Jiang
, X.
Wu
, J.
Liu
, H.
Xue
, T.
Wang
, and Q.
Li
, Bioresour. Technol.
183
, 10
(2015
).[8]
F.
Bouxin
, S.
Baumberger
, J. H.
Renault
, and P.
Dole
, Bioresour. Technol.
102
, 5567
(2011
).[9]
J.
Zakzeski
and B. M.
Weckhuysen
, ChemSusChem
4
, 369
(2011
).[10]
Q.
Wu
, L.
Ma
, J.
Long
, R.
Shu
, Q.
Zhang
, T.
Wang
, and Y.
Xu
, Chin. J. Chem. Phys.
29
, 474
(2016
).[11]
W.
Xu
, S. J.
Miller
, P. K.
Agrawal
, and C. W.
Jones
, ChemSusChem
5
, 667
(2012
).[12]
N.
Yan
, C.
Zhao
, P. J.
Dyson
, C.
Wang
, L. T.
Liu
, and Y.
Kou
, ChemSusChem
1
, 626
(2008
).[13]
J.
Dai
, A. F.
Patti
, and K.
Saito
, Tetrahedron Lett.
57
, 4945
(2016
).[14]
C.
Diaz-Urrutia
, B. B.
Hurisso
, and P. M. P.
Gauthier
, J. Mol. Catal. A
423
, 414
(2016
).[15]
K.
Stark
, N.
Taccardi
, A.
Bosmann
, and P.
Wasserscheid
, ChemSusChem
3
, 719
(2010
).[16]
D. J.
Nowakowski
, A. V.
Bridgwater
, D. C.
Elliott
, D.
Meier
, and P.
Wild
, J. Anal. Appl. Pyrolysis
88
, 53
(2010
).[17]
D. K.
Shen
, S.
Gu
, K. H.
Luo
, S. R.
Wang
, and M. X.
Fang
, Bioresour. Technol.
101
, 6136
(2010
).[18]
G.
Jiang
, D. J.
Nowakowski
, and A. V.
Bridgwater
, Energy Fuels
24
, 4470
(2010
).[19]
Y.
Zhao
, L.
Deng
, B.
Liao
, Y.
Fu
, and Q. X.
Guo
, Energy Fuels
24
, 5735
(2010
).[20]
C. A.
Mullen
, and A. A.
Boateng
, Fuel Process. Technol.
91
, 1446
(2010
).[21]
J.
Zakzeski
and B. M.
Weckhuysen
, ChemSusChem
4
, 369
(2011
).[22]
M.
Fan
, S.
Deng
, T.
Wang
, and Q.
Li
, Chin. J. Chem. Phys.
27
, 221
(2014
).[23]
J.
Zhu
, J.
Wang
, and Q.
Li
, Chin. J. Chem. Phys.
26
, 477
(2013
).[24]
Y.
Zhang
, P.
Bi
, J.
Wang
, P.
Jiang
, X.
Wu
, H.
Xue
, J.
Liu
, X.
Zhou
, and Q.
Li
, Appl. Energy
150
, 128
(2015
).[25]
J.
Wang
, P.
Bi
, Y.
Zhang
, H.
Xue
, P.
Jiang
, X.
Wu
, J.
Liu
, T.
Wang
, and Q.
Li
, Energy
86
, 488
(2015
).[26]
M.
Fan
, P.
Jiang
, P.
Bi
, S.
Deng
, L.
Yan
, Q.
Zhai
, T.
Wang
, and Q.
Li
, Bioresour. Technol.
143
, 59
(2013
).[27]
A. G.
Gayubo
, A.
Alonso
, B.
Valle
, A. T.
Aguayo
, M.
Olazar
, and J.
Bilbao
, Fuel
89
, 3365
(2010
).[28]
P.
Bi
, Y.
Yuan
, M.
Fan
, P.
Jiang
, Q.
Zhai
, and Q.
Li
, Bioresour. Technol.
136
, 222
(2013
).[29]
L.
Yuan
, T.
Ye
, F.
Gong
, Q.
Guo
, Y.
Torimoto
, M.
Yamamoto
, and Q.
Li
, Energy Fuels
23
, 3103
(2009
).
This content is only available via PDF.
© 2017 Chinese Physical Society.
2017
Chinese Physical Society
You do not currently have access to this content.